Skip to main content

Deterministic Consistent Density Estimation for Light Transport Simulation

  • Conference paper
  • First Online:
Monte Carlo and Quasi-Monte Carlo Methods 2012

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 65))

Abstract

Quasi-Monte Carlo methods often are more efficient than Monte Carlo methods, mainly, because deterministic low discrepancy sequences are more uniformly distributed than independent random numbers ever can be. So far, tensor product quasi-Monte Carlo techniques have been the only deterministic approach to consistent density estimation. By avoiding the repeated computation of identical information, which is intrinsic to the tensor product approach, a more efficient quasi-Monte Carlo method is derived. Its analysis relies on the properties of (0, 1)-sequences, provides new insights, and generalizes previous approaches to light transport simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. van Antwerpen, D.: Unbiased physically based rendering on the GPU. Master’s thesis, Computer Graphics Research Group, Department of Software Technology Faculty EEMCS, Delft University of Technology (2011)

    Google Scholar 

  2. Bratley, P., Fox, B., Niederreiter, H.: Implementation and tests of low-discrepancy sequences. ACM Trans. Model. Comput. Simul. 2, 195–213 (1992)

    Article  MATH  Google Scholar 

  3. Dahm, K.: A comparison of light transport algorithms on the GPU. Master’s thesis, Computer Graphics Group, Saarland University (2011)

    Google Scholar 

  4. Faure, H.: Discrépance de suites associées à un système de numération (en dimension s). Acta Arith. 41, 337–351 (1982)

    MathSciNet  MATH  Google Scholar 

  5. Georgiev, I., Křivánek, J., Davidovič, T., Slusallek, P.: Light transport simulation with vertex connection and merging. ACM Trans. Graph. 31, 192:1–192:10 (2012)

    Google Scholar 

  6. Grünschloß, L., Raab, M., Keller, A.: Enumerating quasi-Monte Carlo point sequences in elementary intervals. In: Plaskota, L., Woźniakowski, H. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2010, pp. 399–408. Springer, Berlin/Heidelberg (2012)

    Chapter  Google Scholar 

  7. Hachisuka, T., Pantaleoni, J., Jensen, H.: A path space extension for robust light transport simulation. ACM Trans. Graph. 31, 191:1–191:10 (2012)

    Google Scholar 

  8. Halton, J.: On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals. Numer. Math. 2, 84–90 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hickernell, F., Hong, H., L’Ecuyer, P., Lemieux, C.: Extensible lattice sequences for quasi-Monte Carlo quadrature. SIAM J. Sci. Comput. 22, 1117–1138 (2001)

    Article  MathSciNet  Google Scholar 

  10. Hlawka, E., Mück, R.: Über eine Transformation von gleichverteilten Folgen II. Computing 9, 127–138 (1972)

    Article  MATH  Google Scholar 

  11. Jarosz, W., Nowrouzezahrai, D., Thomas, R., Sloan, P., Zwicker, M.: Progressive photon beams. ACM Trans. Graph. – Proc. ACM SIGGRAPH Asia 30, 181:1–181:11 (2011)

    Google Scholar 

  12. Keller, A.: Instant radiosity. In: SIGGRAPH ’97: Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques, Los Angeles, pp. 49–56 (1997)

    Google Scholar 

  13. Keller, A.: Myths of computer graphics. In: Niederreiter, H. (ed.) Monte Carlo and Quasi-Monte Carlo Methods 2004, pp. 217–243. Springer, Berlin/Heidelberg (2006)

    Chapter  Google Scholar 

  14. Keller, A.: Quasi-Monte Carlo image synthesis in a nutshell. In: Dick, J., Kuo, F.Y., Peters, G.W., Sloan, I.H. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2012, this volume 213–249. Springer, Berlin/Heidelberg (2013)

    Google Scholar 

  15. Keller, A., Grünschloß, L.: Parallel quasi-Monte Carlo integration by partitioning low discrepancy sequences. In: Plaskota, L., Woźniakowski, H. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2010, pp. 487–498. Springer, Berlin/Heidelberg (2012)

    Chapter  Google Scholar 

  16. Keller, A., Grünschloß, L., Droske, M.: Quasi-Monte Carlo progressive photon mapping. In: Plaskota, L., Woźniakowsi, H. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2010, pp. 499–509. Springer, Berlin/Heidelberg (2012)

    Chapter  Google Scholar 

  17. Keller, A., Heidrich, W.: Interleaved sampling. In: Myszkowski, K., Gortler, S. (eds.) Rendering Techniques 2001. Proceedings of the 12th Eurographics Workshop on Rendering, London, pp. 269–276. Springer (2001)

    Google Scholar 

  18. Knaus, C., Zwicker, M.: Progressive photon mapping: A probabilistic approach. ACM Trans. Graph. 30, 25:1–25:13 (2011)

    Google Scholar 

  19. Kollig, T., Keller, A.: Efficient bidirectional path tracing by randomized quasi-Monte Carlo integration. In: Niederreiter, H., Fang, K., Hickernell, F. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2000, pp. 290–305. Springer, Berlin/New York (2002)

    Chapter  Google Scholar 

  20. Lafortune, E.: Mathematical models and Monte Carlo algorithms for physically based rendering. Ph.D. thesis, KU Leuven (1996)

    Google Scholar 

  21. Niederreiter, H.: Point sets and sequences with small discrepancy. Monatsh. Math. 104, 273–337 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  22. Niederreiter, H.: Random Number Generation and Quasi-Monte Carlo Methods. SIAM, Philadelphia (1992)

    Book  MATH  Google Scholar 

  23. Niederreiter, H.: Error bounds for quasi-Monte Carlo integration with uniform point sets. J. Comput. Appl. Math. 150, 283–292 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  24. Owen, A.: Randomly permuted (t, m, s)-nets and (t, s)-sequences. In: Niederreiter, H., Shiue, P.J.-S. (eds.) Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing. Lecture Notes in Statistics, vol. 106, pp. 299–315. Springer, New York (1995)

    Chapter  Google Scholar 

  25. Owen, A.: Monte Carlo variance of scrambled net quadrature. SIAM J. Numer. Anal. 34, 1884–1910 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  26. Pajot, A., Barthe, L., Paulin, M., Poulin, P.: Combinatorial bidirectional path-tracing for efficient hybrid CPU/GPU rendering. Comput. Graph. Forum 30, 315–324 (2011)

    Article  Google Scholar 

  27. Paskov, S.: Termination criteria for linear problems. J. Complexity 11, 105–137 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  28. Schmid, W.: (t, m, s)-Nets: Digital construction and combinatorial aspects. Ph.D. thesis, Universität Salzburg (1995)

    Google Scholar 

  29. Sobol’, I.: On the Distribution of points in a cube and the approximate evaluation of integrals. Zh. vychisl. Mat. mat. Fiz. 7, 784–802 (1967)

    Google Scholar 

  30. Sobol’, I.: Die Monte-Carlo-Methode. Deutscher Verlag der Wissenschaften, Berlin (1991)

    Google Scholar 

  31. Sobol’, I., Asotsky, D., Kreinin, A., Kucherenko, S.: Construction and comparison of high-dimensional Sobol’ generators. WILMOTT Mag. 56, 64–79 (2011)

    Google Scholar 

  32. Veach, E.: Robust Monte Carlo methods for light transport simulation. Ph.D. thesis, Stanford University (1997)

    Google Scholar 

  33. Veach, E., Guibas, L.: Optimally combining sampling techniques for Monte Carlo rendering. In: SIGGRAPH ’95 Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques, Los Angeles, pp. 419–428 (1995)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Leonhard Grünschloß for the profound discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Keller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Keller, A., Binder, N. (2013). Deterministic Consistent Density Estimation for Light Transport Simulation. In: Dick, J., Kuo, F., Peters, G., Sloan, I. (eds) Monte Carlo and Quasi-Monte Carlo Methods 2012. Springer Proceedings in Mathematics & Statistics, vol 65. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41095-6_23

Download citation

Publish with us

Policies and ethics