Skip to main content

Domain-Engineered Ferroelectric Crystals for Nonlinear and Quantum Optics

  • Chapter
  • 2116 Accesses

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 91))

Abstract

This chapter reviews some experimental applications of non-linear optical processes occurring in periodically-poled ferroelectric crystals. Namely, we report both on spectroscopy/metrology in the mid IR and quantum light generation/detection in the visible/near IR.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. N. Bloembergen, Nonlinear Optics, 4th edn. (World Scientific, Singapore, 1996)

    Google Scholar 

  2. R.W. Boyd, Nonlinear Optics, 2nd edn. (Academic Press, San Diego, 2003)

    Google Scholar 

  3. Y.R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 2002)

    Google Scholar 

  4. D.N. Nikogosyan, Nonlinear Optical Crystals (Springer, Berlin, 2005)

    Google Scholar 

  5. G.D. Boyd, R.C. Miller, K. Nassau, W.L. Bond, A. Savage, LiNbO3: an efficient phase matchable nonlinear optical material. Appl. Phys. Lett. 5, 234 (1964)

    CAS  Google Scholar 

  6. J.A. Armstrong, N. Bloembergen, J. Ducuing, P.S. Pershan, Interactions between light waves in a nonlinear dielectric. Phys. Rev. 127, 1918 (1962)

    CAS  Google Scholar 

  7. D. Feng, N.-B. Ming, J.-F. Hong, Y.-S. Yang, J.-S. Zhu, Z. Yang, Y.-N. Wang, Enhancement of second-harmonic generation in LiNbO3 crystals with periodic laminar ferroelectric domains. Appl. Phys. Lett. 37, 607 (1980)

    CAS  Google Scholar 

  8. J. Faist, F. Capasso, D.L. Sivco, C. Sirtori, A.L. Hutchinson, A.Y. Cho, Quantum cascade laser. Science 264, 553 (1994)

    CAS  Google Scholar 

  9. J. Faist, Quantum Cascade Lasers (Oxford University Press, London, 2013)

    Google Scholar 

  10. S. Borri, S. Bartalini, P. Cancio, I. Galli, G. Giusfredi, D. Mazzotti, P. De Natale, Quantum cascade lasers for high-resolution spectroscopy. Opt. Eng. 49, 111122 (2010)

    Google Scholar 

  11. Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, M. Razeghi, Room temperature quantum cascade lasers with 27 % wall plug efficiency. Appl. Phys. Lett. 98, 181102 (2011)

    Google Scholar 

  12. N. Bandyopadhyay, Y. Bai, S. Tsao, S. Nida, S. Slivken, M. Razeghi, Room temperature continuous wave operation of λ∼3–3.2 μm quantum cascade lasers. Appl. Phys. Lett. 101, 241110 (2012)

    Google Scholar 

  13. A. Slivken, A. Evans, W. Zhang, M. Razeghi, High-power, continuous-operation intersubband laser for wavelengths greater than 10 μm. Appl. Phys. Lett. 90, 151115 (2007)

    Google Scholar 

  14. A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, E. Gini, External cavity quantum cascade laser tunable from 7.6 to 11.4 μm. Appl. Phys. Lett. 95, 061103 (2009)

    Google Scholar 

  15. I. Ricciardi, E. De Tommasi, P. Maddaloni, S. Mosca, A. Rocco, J.-J. Zondy, M. De Rosa, P. De Natale, Frequency-comb-referenced singly-resonant OPO for sub-Doppler spectroscopy. Opt. Express 20, 9178 (2012)

    CAS  Google Scholar 

  16. D. Mazzotti, P. De Natale, G. Giusfredi, C. Fort, J.A. Mitchell, L. Hollberg, Difference-frequency generation in PPLN at 4.25 μm: an analysis of sensitivity limits for DFG spectrometers. Appl. Phys. B 70, 747 (2000)

    CAS  Google Scholar 

  17. S. Borri, P. Cancio, P. De Natale, G. Giusfredi, D. Mazzotti, F. Tamassia, Power-boosted difference-frequency source for high-resolution infrared spectroscopy. Appl. Phys. B 76, 473 (2003)

    CAS  Google Scholar 

  18. I. Galli, S. Bartalini, P. Cancio, G. Giusfredi, D. Mazzotti, P. De Natale, Ultra-stable, widely tunable and absolutely linked mid-IR coherent source. Opt. Express 17, 9582 (2009)

    CAS  Google Scholar 

  19. P. Maddaloni, G. Gagliardi, P. Malara, P. De Natale, A 3.5-mW continuous-wave difference-frequency source around 3 μm for sub-Doppler molecular spectroscopy. Appl. Phys. B 80, 141 (2005)

    CAS  Google Scholar 

  20. I. Galli, S. Bartalini, S. Borri, P. Cancio, G. Giusfredi, D. Mazzotti, P. De Natale, Ti:sapphire laser intracavity difference-frequency generation of 30 mW cw radiation around 4.5 μm. Opt. Lett. 35, 3616 (2010)

    CAS  Google Scholar 

  21. A. Clairon, B. Dahmani, A. Filimon, J. Rutman, Precise frequency measurements of CO2/OsO4 and He–Ne/CH4-stabilized lasers. IEEE Trans. Instrum. Meas. 34, 265 (1985)

    Google Scholar 

  22. R. Holzwarth, T. Udem, T.W. Hänsch, J.C. Knight, W.J. Wadsworth, P.St.J. Russell, Optical frequency synthesizer for precision spectroscopy. Phys. Rev. Lett. 85, 2264 (2000)

    CAS  Google Scholar 

  23. D.J. Jones, S.A. Diddams, J.K. Ranka, A. Stentz, R.S. Windeler, J.L. Hall, S.T. Cundiff, Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis. Science 288, 635 (2000)

    CAS  Google Scholar 

  24. T. Udem, S.A. Diddams, K.R. Vogel, C.W. Oates, E.A. Curtis, W.D. Lee, W.M. Itano, R.E. Drullinger, J.C. Bergquist, L. Hollberg, Absolute frequency measurements of the Hg+ and Ca optical clock transitions with a femtosecond laser. Phys. Rev. Lett. 86, 4996 (2001)

    CAS  Google Scholar 

  25. S.T. Cundiff, J. Ye, Colloquium: femtosecond optical frequency combs. Rev. Mod. Phys. 75, 325 (2003)

    CAS  Google Scholar 

  26. P. Maddaloni, M. Bellini, P. De Natale, Laser-Based Measurements for Time and Frequency Domain Applications: A Handbook. Series in Optics and Optoelectronics (CRC Press, Boca Raton, 2013)

    Google Scholar 

  27. S. Witte, R.T. Zinkstok, W. Ubachs, W. Hogervorst, K.S.E. Eikema, Deep-ultraviolet quantum interference metrology with ultrashort laser pulses. Science 307, 400 (2005)

    CAS  Google Scholar 

  28. R. Jason Jones, K.D. Moll, M.J. Thorpe, J. Ye, Phase-coherent frequency combs in the vacuum ultraviolet via high-harmonic generation inside a femtosecond enhancement cavity. Phys. Rev. Lett. 94, 193201 (2005)

    Google Scholar 

  29. C. Gohle, T. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H.A. Schuessler, F. Krausz, T.W. Hänsch, A frequency comb in the extreme ultraviolet. Nature 436, 234 (2005)

    CAS  Google Scholar 

  30. D.C. Yost, T.R. Schibli, J. Ye, J.L. Tate, J. Hostetter, M.B. Gaarde, K.J. Schafer, Vacuum-ultraviolet frequency combs from below-threshold harmonics. Nat. Phys. 5, 815 (2009)

    CAS  Google Scholar 

  31. D.Z. Kandula, C. Gohle, T.J. Pinkert, W. Ubachs, K.S.E. Eikema, Extreme ultraviolet frequency comb metrology. Phys. Rev. Lett. 105, 063001 (2010)

    Google Scholar 

  32. B. Bernhardt, A. Ozawa, A. Vernaleken, I. Pupeza, J. Kaster, Y. Kobayashi, R. Holzwarth, E. Fill, F. Krausz, T.W. Hänsch, T. Udem, Vacuum ultraviolet frequency combs generated by a femtosecond enhancement cavity in the visible. Opt. Lett. 37, 503 (2012)

    CAS  Google Scholar 

  33. A. Cingöz, D.C. Yost, T.K. Allison, A. Ruehl, M.E. Fermann, I. Hartl, J. Ye, Direct frequency comb spectroscopy in the extreme ultraviolet. Nature 482, 68 (2012)

    Google Scholar 

  34. I. Thomann, A. Bartels, K.L. Corwin, N.R. Newbury, L. Hollberg, S.A. Diddams, J.W. Nicholson, M.F. Yan, 420-MHz Cr:forsterite femtosecond ring laser and continuum generation in the 1–2-μm range. Opt. Lett. 28, 1368 (2003)

    CAS  Google Scholar 

  35. S.M. Foreman, A. Marian, J. Ye, E.A. Petrukhin, M.A. Gubin, O.D. Mücke, F.N.C. Wong, E.P. Ippen, F.X. Kärtner, Demonstration of a He–Ne/CH4-based optical molecular clock. Opt. Lett. 30, 570 (2005)

    CAS  Google Scholar 

  36. A. Amy-Klein, H. Vigué, C. Chardonnet, Absolute frequency measurement of 12C16O2 laser lines with a femtosecond laser comb and new determination of the 12C16O2 molecular constants and frequency grid. J. Mol. Spectrosc. 228, 206 (2004)

    CAS  Google Scholar 

  37. C. Erny, K. Moutzouris, J. Biegert, D. Kühlke, F. Adler, A. Leitenstorfer, U. Keller, Mid-infrared difference-frequency generation of ultrashort pulses tunable between 3.2 and 4.8 μm from a compact fiber source. Opt. Lett. 32, 1138 (2007)

    CAS  Google Scholar 

  38. F. Adler, K.C. Cossel, M.J. Thorpe, I. Hartl, M.E. Fermann, J. Ye, Phase-stabilized, 1.5 W frequency comb at 2.8–4.8 μm. Opt. Lett. 34, 1330 (2009)

    Google Scholar 

  39. N. Leindecker, A. Marandi, R.L. Byer, K.L. Vodopyanov, Broadband degenerate OPO for mid-infrared frequency comb generation. Opt. Express 19, 6296 (2011)

    Google Scholar 

  40. N. Coluccelli, H. Fonnum, M. Haakestad, A. Gambetta, D. Gatti, M. Marangoni, P. Laporta, G. Galzerano, 250-MHz synchronously pumped optical parametric oscillator at 2.25–2.6 μm and 4.1–4.9 μm. Opt. Express 20, 22042 (2012)

    CAS  Google Scholar 

  41. D. Mazzotti, P. Cancio, G. Giusfredi, P. De Natale, M. Prevedelli, Frequency-comb-based absolute frequency measurements in the mid-IR with a difference-frequency spectrometer. Opt. Lett. 30, 997 (2005)

    CAS  Google Scholar 

  42. D. Mazzotti, P. Cancio, A. Castrillo, I. Galli, G. Giusfredi, P. De Natale, A comb-referenced difference-frequency spectrometer for cavity ring-down spectroscopy in the 4.5-μm region. J. Opt. A 8, S490 (2006)

    CAS  Google Scholar 

  43. H.R. Telle, B. Lipphardt, J. Stenger, Kerr-lens mode-locked lasers as transfer oscillators for optical frequency measurements. Appl. Phys. B 74, 1 (2002)

    CAS  Google Scholar 

  44. G. Giusfredi, S. Bartalini, S. Borri, P. Cancio, I. Galli, D. Mazzotti, P. De Natale, Saturated-absorption cavity ring-down spectroscopy. Phys. Rev. Lett. 104, 110801 (2010)

    CAS  Google Scholar 

  45. I. Galli, P. Cancio, G. Di Lonardo, L. Fusina, G. Giusfredi, D. Mazzotti, F. Tamassia, P. De Natale, The ν 3 band of 14C16O2 molecule measured by optical-frequency-comb-assisted cavity ring-down spectroscopy. Mol. Phys. 109, 2267 (2011). Invited article

    CAS  Google Scholar 

  46. I. Galli, S. Bartalini, S. Borri, P. Cancio, D. Mazzotti, P. De Natale, G. Giusfredi, Molecular gas sensing below parts per trillion: radiocarbon-dioxide optical detection. Phys. Rev. Lett. 107, 270802 (2011)

    CAS  Google Scholar 

  47. R.N. Zare, Analytical chemistry: ultrasensitive radiocarbon detection. Nature 482, 312 (2012)

    CAS  Google Scholar 

  48. I. Galli, S. Bartalini, P. Cancio, P. De Natale, D. Mazzotti, G. Giusfredi, M.E. Fedi, P.A. Mandò, Optical detection of radiocarbon dioxide: first results and AMS intercomparison. Radiocarbon 55, 213 (2013)

    CAS  Google Scholar 

  49. P. Cancio, S. Bartalini, S. Borri, I. Galli, G. Gagliardi, G. Giusfredi, P. Maddaloni, P. Malara, D. Mazzotti, P. De Natale, Frequency-comb-referenced mid-IR sources for next-generation environmental sensors. Appl. Phys. B 102, 255 (2011)

    CAS  Google Scholar 

  50. S. Bartalini, P. Cancio, M. De Rosa, G. Giusfredi, P. Maddaloni, D. Mazzotti, I. Ricciardi, M.S. Vitiello, P. De Natale, Frequency-comb-assisted laser sources from the mid-IR to the THz range, in Nonlinear Optics 2013 (NLO 2013), ed. by B. Boulanger, S. Cundiff, M. Kauranen, W. Knox. OSA Technical Digest (Online) (Optical Society of America, Washington, 2013), p. NM3A.1

    Google Scholar 

  51. S. Bartalini, P. Cancio, G. Giusfredi, D. Mazzotti, P. De Natale, S. Borri, I. Galli, T. Leveque, L. Gianfrani, Frequency-comb-referenced quantum-cascade laser at 4.4 μm. Opt. Lett. 32, 988 (2007)

    CAS  Google Scholar 

  52. D. Gatti, A. Gambetta, A. Castrillo, G. Galzerano, P. Laporta, L. Gianfrani, M. Marangoni, High-precision molecular interrogation by direct referencing of a quantum-cascade-laser to a near-infrared frequency comb. Opt. Express 19, 17520 (2011)

    CAS  Google Scholar 

  53. S. Borri, S. Bartalini, I. Galli, P. Cancio, G. Giusfredi, D. Mazzotti, A. Castrillo, L. Gianfrani, P. De Natale, Lamb-dip-locked quantum cascade laser for comb-referenced IR absolute frequency measurements. Opt. Express 16, 11637 (2008)

    CAS  Google Scholar 

  54. S. Borri, I. Galli, F. Cappelli, A. Bismuto, S. Bartalini, P. Cancio, G. Giusfredi, D. Mazzotti, J. Faist, P. De Natale, Direct link of a mid-infrared QCL to a frequency comb by optical injection. Opt. Lett. 37, 1011 (2012)

    CAS  Google Scholar 

  55. F. Cappelli, I. Galli, S. Borri, G. Giusfredi, P. Cancio, D. Mazzotti, A. Montori, N. Akikusa, M. Yamanishi, S. Bartalini, P. De Natale, Subkilohertz linewidth room-temperature mid-IR quantum cascade laser using a molecular sub-Doppler reference. Opt. Lett. 37, 4811 (2012)

    CAS  Google Scholar 

  56. A. Gambetta, D. Gatti, A. Castrillo, G. Galzerano, P. Laporta, L. Gianfrani, M. Marangoni, Mid-infrared quantitative spectroscopy by comb-referencing of a quantum-cascade-laser: application to the CO2 spectrum at 4.3 μm. Appl. Phys. Lett. 99, 251107 (2011)

    Google Scholar 

  57. I. Galli, S. Bartalini, P. Cancio, F. Cappelli, G. Giusfredi, D. Mazzotti, N. Akikusa, M. Yamanishi, P. De Natale, Absolute frequency measurements of CO2 transitions at 4.3 μm with a comb-referenced quantum cascade laser. Mol. Phys. 111, 2041 (2013)

    CAS  Google Scholar 

  58. I. Galli, M. Siciliani de Cumis, F. Cappelli, S. Bartalini, D. Mazzotti, S. Borri, A. Montori, N. Akikusa, M. Yamanishi, G. Giusfredi, P. Cancio, P. De Natale, Comb-assisted subkilohertz linewidth quantum cascade laser for high-precision mid-infrared spectroscopy. Appl. Phys. Lett. 102, 121117 (2013)

    Google Scholar 

  59. P. Maddaloni, P. Malara, G. Gagliardi, P. De Natale, Mid-infrared fiber-based optical comb. New J. Phys. 8, 262 (2006)

    Google Scholar 

  60. F. Capasso, C. Gmachl, R. Paiella, A. Tredicucci, A.L. Hutchinson, D.L. Sivco, J.N. Baillargeon, A.Y. Cho, H.C. Liu, New frontiers in quantum cascade lasers and applications. IEEE J. Sel. Top. Quantum Electron. 6, 931 (2000)

    CAS  Google Scholar 

  61. A. Schliesser, N. Picque, T.W. Hänsch, Mid-infrared frequency combs. Nat. Photonics 6, 440 (2012)

    CAS  Google Scholar 

  62. R.F. Curl, F. Capasso, C. Gmachl, A.A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, F.K. Tittel, Quantum cascade lasers in chemical physics. Chem. Phys. Lett. 487, 1 (2010)

    CAS  Google Scholar 

  63. D. Bouwmeester, A. Ekert, A. Zeilinger (eds.), The Physics of Quantum Information (Springer, Berlin, 2000)

    Google Scholar 

  64. E. Knill, R. Laflamme, G.J. Milburn, A scheme for efficient quantum computation with linear optics. Nature 409, 46 (2001)

    CAS  Google Scholar 

  65. N. Gisin, G.G. Ribordy, W. Tittel, H. Zbinden, Quantum cryptography. Rev. Mod. Phys. 74, 145 (2002)

    Google Scholar 

  66. A. Migdall, Correlated-photon metrology without absolute standards. Phys. Today 52(1), 41 (1999)

    CAS  Google Scholar 

  67. C.M. Caves, Quantum-mechanical noise in an interferometer. Phys. Rev. D 23, 1693 (1981)

    Google Scholar 

  68. S.L. Braunstein, P. van Loock, Quantum information with continuous variables. Rev. Mod. Phys. 77, 513 (2005)

    Google Scholar 

  69. A. Furusawa, J.L. Sorensen, S.L. Braunstein, C.A. Fuchs, H.J. Kimble, E.S. Polzik, Unconditional quantum teleportation. Science 282, 706 (1998)

    CAS  Google Scholar 

  70. L.-A. Wu, M. Xiao, H.J. Kimble, Squeezed states of light from an optical parametric oscillator. J. Opt. Soc. Am. B 4, 1465 (1987)

    CAS  Google Scholar 

  71. R.E. Slusher, P. Grangier, A. Laporta, B. Yurke, M.J. Potasek, Pulsed squeezed light. Phys. Rev. Lett. 59, 2566 (1987)

    CAS  Google Scholar 

  72. D.K. Serkland, M.M. Fejer, R.L. Byer, Y. Yamamoto, Squeezing in a quasi-phase-matched LiNbO3 waveguide. Opt. Lett. 20, 1649 (1995)

    CAS  Google Scholar 

  73. M.E. Anderson, M. Beck, M.G. Raymer, J.D. Bierlein, Quadrature squeezing with ultrashort pulses in nonlinear-optical waveguides. Phys. Rev. Lett. 20, 620 (1995)

    CAS  Google Scholar 

  74. T. Hirano, K. Kotani, T. Ishibashi, S. Okude, T. Kuwamoto, 3 dB squeezing by single-pass parametric amplification in a periodically poled KTiOPO4 crystal. Opt. Lett. 30, 1722 (2005)

    CAS  Google Scholar 

  75. K. Schneider, M. Lang, J. Mlynek, S. Schiller, Generation of strongly squeezed continuous-wave light at 1064 nm. Opt. Express 2, 59 (1998)

    CAS  Google Scholar 

  76. Y. Takeno, M. Yukawa, H. Yonezawa, A. Furusawa, Observation of −9 dB quadrature squeezing with improvement of phase stability in homodyne measurement. Opt. Express 15, 4321 (2007)

    Google Scholar 

  77. G. Hetet, O. Gloeckl, K.A. Pilypas, C.C. Harb, B.C. Buchler, H.-A. Bachor, P.K. Lam, Squeezed light for bandwidth-limited atom optics experiments at the rubidium D1 line. J. Phys. B 40, 221 (2007)

    CAS  Google Scholar 

  78. M. Mehmet, H. Vahlbruch, N. Lastzka, K. Danzmann, R. Schnabel, Observation of squeezed states with strong photon-number oscillations. Phys. Rev. A 81, 013814 (2010)

    Google Scholar 

  79. T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Händchen, H. Vahlbruch, M. Mehmet, H. Müller-Ebhardt, R. Schnabel, Quantum enhancement of the zero-area sagnac interferometer topology for gravitational wave detection. Phys. Rev. Lett. 104, 251102 (2010)

    Google Scholar 

  80. The LIGO scientific collaboration, A gravitational wave observatory operating beyond the quantum shot-noise limit. Nat. Phys. 7, 962 (2011)

    Google Scholar 

  81. M. Mehmet, S. Ast, T. Eberle, S. Steinlechner, H. Vahlbruch, R. Schnabel, Squeezed light at 1550 nm with a quantum noise reduction of 12.3 dB. Opt. Express 19, 25763 (2011)

    Google Scholar 

  82. C. Santori, D. Fattal, J. Vuckovic, G.S. Solomon, Y. Yamamoto, Indistinguishable photons from a single-photon device. Nature 419, 594 (2002)

    CAS  Google Scholar 

  83. C. Brunel, B. Lounis, P. Tamarat, M. Orrit, Triggered source of single photons based on controlled single molecule fluorescence. Phys. Rev. Lett. 83, 2722 (1999)

    CAS  Google Scholar 

  84. C. Kurtsiefer, S. Mayer, P. Zarda, H. Weinfurter, Stable solid-state source of single photons. Phys. Rev. Lett. 85, 290 (2000)

    CAS  Google Scholar 

  85. D.C. Burnham, D.L. Weinberg, Observation of simultaneity in parametric production of optical photon pairs. Phys. Rev. Lett. 25, 84 (1970)

    CAS  Google Scholar 

  86. C.K. Hong, L. Mandel, Experimental realization of a localized one-photon state. Phys. Rev. Lett. 56, 58 (1986)

    CAS  Google Scholar 

  87. A.I. Lvovsky, H. Hansen, T. Aichele, O. Benson, J. Mlynek, S. Schiller, Quantum state reconstruction of the single-photon Fock state. Phys. Rev. Lett. 87, 050402 (2001)

    CAS  Google Scholar 

  88. A. Zavatta, S. Viciani, M. Bellini, Tomographic reconstruction of the single-photon Fock state by high-frequency homodyne detection. Phys. Rev. A 70, 053821 (2004)

    Google Scholar 

  89. A. Zavatta, S. Viciani, M. Bellini, Quantum-to-classical transition with single-photon-added coherent states of light. Science 306, 660 (2004)

    CAS  Google Scholar 

  90. V. Parigi, A. Zavatta, M. Kim, M. Bellini, Probing quantum commutation rules by addition and subtraction of single photons to/from a light field. Science 317, 1890 (2007)

    CAS  Google Scholar 

  91. P.G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A.V. Sergienko, Y. Shih, New high-intensity source of polarization-entangled photon pairs. Phys. Rev. Lett. 75, 4337 (1995)

    CAS  Google Scholar 

  92. I. Marcikic, H. de Riedmatten, W. Tittel, V. Scarani, H. Zbinden, N. Gisin, Time-bin entangled qubits for quantum communication created by femtosecond pulses. Phys. Rev. A 66, 062308 (2002)

    Google Scholar 

  93. I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legre, N. Gisin, Distribution of time-bin entangled qubits over 50 km of optical fiber. Phys. Rev. Lett. 93, 180502 (2004)

    CAS  Google Scholar 

  94. S. Tanzilli, H. de Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D.B. Ostrowsky, N. Gisin, PPLN waveguide for quantum communication. Eur. Phys. J. D 18, 155 (2002)

    CAS  Google Scholar 

  95. I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legre, N. Gisin, Highly efficient photon-pair source using a periodically poled lithium niobate waveguide. Electron. Lett. 37, 26 (2001)

    Google Scholar 

  96. S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, H. Zbinden, Distribution of time-bin entangled qubits over 50 km of optical fiber. Nature 437, 116 (2005)

    CAS  Google Scholar 

  97. K. Sanaka, K. Kawahara, T. Kuga, New high-efficiency source of photon pairs for engineering quantum entanglement. Phys. Rev. Lett. 86, 5620 (2001)

    CAS  Google Scholar 

  98. B.S. Shi, A. Tomita, Highly efficient generation of pulsed photon pairs using a bulk periodically poled potassium titanyl phosphate. J. Opt. Soc. Am. B 12, 2081 (2004)

    Google Scholar 

  99. A.B. U’Ren, C. Silberhorn, K. Banaszek, I.A. Walmsley, Efficient conditional preparation of high-fidelity single photon states for fiber-optic quantum networks. Phys. Rev. Lett. 93, 093601 (2004)

    Google Scholar 

  100. S.R. Huisman, N. Jain, S.A. Babichev, F. Vewinger, A.N. Zhang, S.H. Youn, A.I. Lvovsky, Instant single-photon Fock state tomography. Opt. Lett. 34, 2739 (2009)

    CAS  Google Scholar 

  101. E. Bimbard, N. Jain, A. MacRae, A.I. Lvovsky, Quantum-optical state engineering up to the two-photon level. Nat. Photonics 4, 243 (2010)

    CAS  Google Scholar 

  102. Y.J. Ding, S.J. Lee, J.B. Khurgin, Transversely pumped counterpropagating optical parametric oscillation and amplification. Phys. Rev. Lett. 75, 429 (1995)

    CAS  Google Scholar 

  103. M.C. Booth, M. Atatüre, G. Di Giuseppe, B.E.A. Saleh, A.V. Sergienko, M.C. Teich, Counterpropagating entangled photons from a waveguide with periodic nonlinearity. Phys. Rev. A 66, 023815 (2002)

    Google Scholar 

  104. Z.D. Walton, M.C. Booth, A.V. Sergienko, B.E.A. Saleh, M.C. Teich, Controllable frequency entanglement via auto-phase-matched spontaneous parametric down-conversion. Phys. Rev. A 67, 538101 (2003)

    Google Scholar 

  105. V. Giovannetti, S. Lloyd, L. Maccone, F.N.C. Wong, Clock synchronization with dispersion cancellation. Phys. Rev. Lett. 87, 117902 (2001)

    CAS  Google Scholar 

  106. L. Lanco, S. Ducci, J.-P. Likforman, X. Marcadet, J.A.W. Van Houwelingen, H. Zbinden, G. Leo, V. Berger, Semiconductor waveguide source of counterpropagating twin photons. Phys. Rev. Lett. 97, 173901 (2006)

    CAS  Google Scholar 

  107. A. Orieux, X. Caillet, A. Lemaître, P. Filloux, I. Favero, G. Leo, S. Ducci, Efficient parametric generation of counterpropagating two-photon states. J. Opt. Soc. Am. B 28, 45 (2011)

    CAS  Google Scholar 

  108. M. Lobino, G.D. Marshall, C. Xiong, A.S. Clark, D. Bonneau, C.M. Natarajan, M.G. Tanner, R.H. Hadfield, S.N. Dorenbos, T. Zijlstra, V. Zwiller, M. Marangoni, R. Ramponi, M.G. Thompson, B.J. Eggleton, J.L. O’Brien, Correlated photon-pair generation in a periodically poled MgO doped stoichiometric lithium tantalate reverse proton exchanged waveguide. Appl. Phys. Lett. 99, 081110 (2011)

    Google Scholar 

  109. A.J. Miller, S.W. Nam, J.M. Martinis, A.V. Sergienko, Demonstration of low-noise near-infrared photon counter with multiphoton discrimination. Appl. Phys. Lett. 83, 791 (2003)

    CAS  Google Scholar 

  110. P. Kumar, Quantum frequency conversion. Opt. Lett. 15, 1476 (1990)

    CAS  Google Scholar 

  111. J. Huang, P. Kumar, Observation of quantum frequency conversion. Phys. Rev. Lett. 68, 2153 (1992)

    CAS  Google Scholar 

  112. M.A. Albota, F.N.C. Wong, Efficient single-photon counting at 1.55 μm by means of frequency upconversion. Opt. Lett. 29, 1449 (2004)

    Google Scholar 

  113. A.P. VanDevender, P.G. Kwiat, High efficiency single photon detection via frequency up-conversion. J. Mod. Opt. 51, 1433 (2004)

    CAS  Google Scholar 

  114. S. Ramelow, A. Fedrizzi, A. Poppe, N.K. Langford, A. Zeilinger, Polarization-entanglement-conserving frequency conversion of photons. Phys. Rev. A 85, 013845 (2012)

    Google Scholar 

  115. M.T. Rakher, L. Ma, O. Slattery, X. Tang, K. Srinivasan, Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion. Nat. Photonics 4, 786 (2010)

    CAS  Google Scholar 

  116. M.T. Rakher, L. Ma, M. Davanço, O. Slattery, X. Tang, K. Srinivasan, Simultaneous wavelength translation and amplitude modulation of single photons from a quantum dot. Phys. Rev. Lett. 107, 083602 (2011)

    Google Scholar 

  117. A.P. VanDevender, P.G. Kwiat, Quantum transduction via frequency upconversion (invited). J. Opt. Soc. Am. B 24, 295 (2007)

    CAS  Google Scholar 

  118. L. Ma, M.T. Rakher, M.J. Stevens, O. Slattery, K. Srinivasan, X. Tang, Temporal correlation of photons following frequency up-conversion. Opt. Express 19, 10501 (2011)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davide Mazzotti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bellini, M. et al. (2014). Domain-Engineered Ferroelectric Crystals for Nonlinear and Quantum Optics. In: Ferraro, P., Grilli, S., De Natale, P. (eds) Ferroelectric Crystals for Photonic Applications. Springer Series in Materials Science, vol 91. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41086-4_11

Download citation

Publish with us

Policies and ethics