Advertisement

Computer-Aided Detection of Colorectal Lesions with Super-Resolution CT Colonography: Pilot Evaluation

  • Janne J. Näppi
  • Synho Do
  • Hiroyuki Yoshida
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8198)

Abstract

Reliable computer-aided detection (CADe) of small polyps and flat lesions is limited by the relatively low image resolution of computed tomographic colonography (CTC). We developed a sinogram-based super-resolution (SR) method to enhance the images of lesion candidates detected by CADe. First, CADe is used to detect lesion candidates at high sensitivity from conventional CTC images. Next, the signal patterns of the lesion candidates are enhanced in sinogram domain by use of non-uniform compressive sampling and iterative reconstruction to produce SR images of the lesion candidates. For pilot evaluation, an anthropomorphic phantom including simulated lesions was filled partially with fecal tagging and scanned by use of a CT scanner. A fully automated CADe scheme was used to detect lesion candidates in the images reconstructed at conventional 0.61-mm and at 0.10-mm SR image resolution. The proof-of-concept results indicate that the SR method has potential to reduce the number of FP CADe detections below that obtainable with the conventional CTC imaging technology.

Keywords

Iterative reconstruction super-resolution domain decomposition computer-aided detection virtual colonoscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Johnson, C., Chen, M.H., Toleday, A., Heiken, J., Dachman, A., Kuo, M., et al.: Accuracy of CT colonography for detection of large adenomas and cancers. N. Engl. J. Med. 359, 1207–1217 (2008)CrossRefGoogle Scholar
  2. 2.
    Park, S., Kim, S., Lee, S., Bogoni, L., et al.: Sensitivity of CT colonography for nonpolypoid colorectal lesions interpreted by human readers and with computer-aided detection. Am. J. Roentgenol. 193, 70–78 (2009)CrossRefGoogle Scholar
  3. 3.
    Näppi, J., Yoshida, H.: Virtual tagging for laxative-free CT colonography: pilot evaluation. Med. Phys. 36, 1830–1838 (2009)CrossRefGoogle Scholar
  4. 4.
    Do, S., Cho, S., Karl, W., Kalra, M., Brady, T., Pien, H.: Accurate model-based high resolution cardiac image reconstruction in dual source CT. In: IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp. 330–333. IEEE Press, Boston (2009)CrossRefGoogle Scholar
  5. 5.
    Do, S., Karl, W., Liang, Z., Kalra, M., Brady, T., Pien, H.: A decomposition-based CT reconstruction formulation for reducing blooming artifacts. Phys. Med. Biol. 56, 7109–7125 (2011)CrossRefGoogle Scholar
  6. 6.
    Jacobs, F., Sundermann, E., De Sutter, B., Christiaens, M., Lemahieu, I.: A fast algorithm to calculate the extract radiological path through a pixel or voxel space. J. Comput. Inf. T. 6, 89–94 (1998)Google Scholar
  7. 7.
    Näppi, J., Yoshida, H.: Fully automated three-dimensional detection of polyps in fecal-tagging CT colonography. Acad. Radiol. 25, 287–300 (2007)CrossRefGoogle Scholar
  8. 8.
    Yoshida, H., Näppi, J.: Three-dimensional computer-aided diagnosis scheme for detection of colonic polyps. IEEE Trans. Med. Imaging 20, 1261–1274 (2001)CrossRefGoogle Scholar
  9. 9.
    Näppi, J., Frimmel, H., Dachman, A., Yoshida, H.: Computerized detection of colorectal masses in CT colonography based on fuzzy merging and wall-thickening analysis. Med. Phys. 31, 860–872 (2004)CrossRefGoogle Scholar
  10. 10.
    Näppi, J., Yoshida, H.: Automated detection of polyps in CT colonography: evaluation of volumetric features for reduction of false positives. Acad. Radiol. 9, 386–397 (2002)CrossRefGoogle Scholar
  11. 11.
    Näppi, J.J., Regge, D., Yoshida, H.: Comparative performance of random forest and support vector machine classifiers for detection of colorectal lesions in CT colonography. In: Yoshida, H., Sakas, G., Linguraru, M.G. (eds.) Abdominal Imaging 2011. LNCS, vol. 7029, pp. 27–34. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  12. 12.
    Näppi, J., Yoshida, H.: Ranking of polyp candidates for CAD in CT colonography. In: SPIE Medical Imaging 2005: Physiology, Funcions, and Structure from Medical Images, vol. 5746, pp. 432–439 (2005)Google Scholar
  13. 13.
    Do, S., Liang, Z., Karl, W., Brady, T., Pien, H.: A projection-driven pre-correction technique for iterative reconstruction of helical cone-beam cardiac CT images. In: Proc. SPIE Medical Imaging: Physics of Medical Imaging, vol. 6913. SPIE Press (2008)Google Scholar
  14. 14.
    Taylor, S., Robinson, C., Boone, D., Honeyfield, L., Halligan, S.: Polyp characteristics correctly annotated by computer-aided detection software but ignored by reporting radiologists during CT colonography. Radiology 253, 715–723 (2009)CrossRefGoogle Scholar
  15. 15.
    Hsieh, J., Molthen, R., Dawson, C., Johnson, R.: An iterative approach to the beam hardening correction in cone beam CT. Med. Phys. 27, 23–29 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Janne J. Näppi
    • 1
  • Synho Do
    • 1
  • Hiroyuki Yoshida
    • 1
  1. 1.Imaging and Harvard Medical SchoolMassachusetts General HospitalBostonUSA

Personalised recommendations