Advertisement

A Novel Computer Aided Detection (CADe) Scheme for Colonic Polyps Based on the Structure Decomposition

  • Huafeng Wang
  • Lihong Li
  • Hao Peng
  • Hao Han
  • Bowen Song
  • Yunhong Wang
  • Xianfeng Gu
  • Zhengrong Liang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8198)

Abstract

Accurately detecting small polyps (ranged from 5~8mm) on the colon wall is of great significance for early diagnosis colorectal cancers. However, colon usually consists of the mucosa layers which result in partial volume effect (PVE) on the colon wall. Consequently, the task of computer aided detection (CADe) of polyps turns into too complicated to be reached by simply following solo philosophy. In order to achieve the mission of small polyps’ detection, we propose a novel global structure decomposition approach in this paper. That is, the complex colon was separated into much uniform broken parts by means of analysis on second order derivatives of the volume image. Experimentally, we chose 60 patient cases from dataset provided by Wisconsin, and in which we focus on the polyps whose size range from 5~8mm to validate the presented new approach. Compared with previously presented in the literature, the experimental results are much more promising with an average sensitivity of 0.984. Meanwhile, the false positive rate dramatically decreased to 2.2 per dataset after false positive reduction.

Keywords

Colonic polyp computed tomography colonography computeraided detection colon structure decomposition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    American Cancer Society: Cancer Facts & Figures. American Cancer Society, Atlanta (2013)Google Scholar
  2. 2.
    Chen, M.H., Blevins, M., Herman, B., Johnson, C.: National CT Colonography Trial (ACRIN 6664): are CT colonography, colonoscopy and pathology giving the same measures for polyp size? Radiological Society of North America, 279 (2008)Google Scholar
  3. 3.
    Liu, J., Kabadi, S., Uitert, R.V., Petrick, N., Deriche, R., Summers, R.M.: Improved computer-aided detection of small polyps in CT colonography using interpolation for curvature estimation. Med. Phys. 38, 4276 (2011)CrossRefGoogle Scholar
  4. 4.
    Sundaram, P., Zomorodian, A., Beaulieu, C., Napel, S.: Colon Polyp Detection using Smoothed Shape Operators: Preliminary Results. Med. Image Anal. 12, 99–119 (2008)CrossRefGoogle Scholar
  5. 5.
    Liang, Z., Wang, S.: An EM approach to MAP solution of segmenting tissue mixtures: A numerical analysis. IEEE Trans. Med. Imag. 28, 297–310 (2009)CrossRefGoogle Scholar
  6. 6.
    Zhu, H., Liang, Z., Pickhardt, P.J.: Increasing computer-aided detection specificity by projection features for CT colonography. Med. Phys. 37, 1468–1481 (2010)CrossRefGoogle Scholar
  7. 7.
    Liu, J., Kabadi, S., Uitert, R.V., Petrick, N., Deriche, R., Summers, R.M.: Improved computer-aided detection of small polyps in CT colonography using interpolation for curvature estimation. Med. Phys. 38, 4276 (2011)CrossRefGoogle Scholar
  8. 8.
    Wang, Z., Liang, Z., Li, L.: Reduction of false positives by internal features for polyp detection in CT-based virtual colonoscopy. Med. Phys. 32, 3602–3616 (2005)CrossRefGoogle Scholar
  9. 9.
    Frangi, A.F., Niessen, W.J., Vincken, K.L., Viergever, M.A.: Multiscale vessel enhancement filtering. In: Wells, W.M., Colchester, A., Delp, S. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 130–137. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  10. 10.
    Lorenz, C., Carlsen, I.C., Buzug, T.M., Fassnacht, C., Weese, J.: Multi-scale line segmentation with automatic estimation of width, contrast and tangential direction in 2D and 3D medical images. In: Troccaz, J., Mösges, R., Grimson, W.E.L. (eds.) CVRMed-MRCAS 1997. LNCS, vol. 1205, pp. 233–242. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  11. 11.
    Kim, S.H., Lee, J.M., Lee, J.G., Kim, J.H., Lefere, P.A., Han, J.K., Choi, B.I.: Computer-Aided Detection of Colonic Polyps at CT Colonography Using a Hessian Matrix-Based Algorithm: Preliminary Study. Gastrointestinal Imaging 189, 41–51 (2007)Google Scholar
  12. 12.
    Nappi, J., Frimmel, H., Dachman, A., Yoshida, H.: Computerized detection of colorectal masses in CT colonography based on fuzzy merging and wall-thickening analysis. Med. Phys. 31, 860–872 (2004)CrossRefGoogle Scholar
  13. 13.
    Chang, Y.W., Hsieh, C.J., Chang, K.W., Ringgaard, M., Lin, C.J.: Training and testing low-degree polynomial data mappings via linear SVM. Machine Learning Research 11, 1471–1490 (2010)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Chang, C.-C., Lin, C.: LIBSVM: A library for support vector machines (2001), http://www.csie.ntu.edu.tw/~cjlin/libsvm
  15. 15.
    Zhu, H., Duan, C., Wang, S., Liang, Z.: Computer-aided detection of colonic polyps with level set based adaptive convolution. Cancer Management and Research 1, 1–13 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Huafeng Wang
    • 1
  • Lihong Li
    • 1
  • Hao Peng
    • 1
  • Hao Han
    • 1
  • Bowen Song
    • 1
  • Yunhong Wang
    • 1
  • Xianfeng Gu
    • 1
  • Zhengrong Liang
    • 1
  1. 1.School of SoftwareBeihang UniversityBeijingChina

Personalised recommendations