Advertisement

Registration of Prone and Supine CT Colonography Datasets with Differing Endoluminal Distension

  • Holger R. Roth
  • Jamie R. McClelland
  • Thomas E. Hampshire
  • Darren J. Boone
  • Yipeng Hu
  • Marc Modat
  • Hui Zhang
  • Sebastien Ourselin
  • Steve Halligan
  • David J. Hawkes
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8198)

Abstract

Robust registration between prone and supine data acquisitions for CT colonography is pivotal for medical interpretation but a challenging problem, especially in sub-optimally prepared patients. This paper introduces a prone and supine registration method that aims to overcome the difficulties posed by differences in luminal distension and bowel cleansing. The endoluminal surface is iteratively deformed using thin plate spline interpolation in order to increase similarity between prone and supine surfaces. Iterative deformation allows the re-computation of surface curvatures and, therefore, surface features to resemble one another more closely. Therefore, the similarity between surfaces increases with each optimization step when running a subsequent intensity-based registration in cylindrical space. Improved spatial alignment of endoluminal surfaces and better registration accuracies are shown in a limited number of challenging cases.

Keywords

Abdominal imaging CT colonography oncology applications registration computed tomography computer-aided diagnosis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Acar, B., Napel, S., Paik, D., Li, P., Yee, J., Beaulieu, C., Jeffrey, R.: Registration of supine and prone CT colonography data: Method and evaluation. Radiology 221(332), 332 (2001)Google Scholar
  2. 2.
    Hampshire, T., Roth, H., Hu, M., Boone, D., Slabaugh, G., Punwani, S., Halligan, S., Hawkes, D.: Automatic prone to supine haustral fold matching in CT colonography using a markov random field model. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part I. LNCS, vol. 6891, pp. 508–515. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    Hara, A., Kuo, M., Blevins, M., Chen, M., Yee, J., Dachman, A., Menias, C., Siewert, B., Cheema, J., Obregon, R., et al.: National CT colonography trial (acrin 6664): comparison of three full-laxative bowel preparations in more than 2500 average-risk patients. Am. J. Roentgenol. 196(5), 1076–1082 (2011)CrossRefGoogle Scholar
  4. 4.
    Huang, A., Roy, D., Summers, R., Franaszek, M., Petrick, N., Choi, J., Pickhardt, P.: Teniae coli–based circumferential localization system for CT colonography: Feasibility study. Radiology 243(2), 551–560 (2007)CrossRefGoogle Scholar
  5. 5.
    Jin, M., Kim, J., Luo, F., Gu, X.: Discrete surface Ricci flow. IEEE Trans. Vis. Comput. Graphics 14(5), 1030–1043 (2008)CrossRefGoogle Scholar
  6. 6.
    Li, B., Li, X., Wang, K., Qin, H.: Surface mesh to volumetric spline conversion with generalized polycubes. IEEE Transactions on Visualization and Computer Graphics 19(9), 1539–1551 (2013)CrossRefGoogle Scholar
  7. 7.
    Li, P., Napel, S., Acar, B., Paik, D., Jeffrey Jr., R., Beaulieu, C.: Registration of central paths and colonic polyps between supine and prone scans in computed tomography colonography: Pilot study. Med. Phys. 31(10), 2912–2923 (2004)CrossRefGoogle Scholar
  8. 8.
    Näppi, J., Okamura, A., Frimmel, H., Dachman, A., Yoshida, H.: Region-based supine-prone correspondence for reduction of false-positive CAD polyp candidates in CT colonography. Acad. Radiol. 12, 695–707 (2005)CrossRefGoogle Scholar
  9. 9.
    Roth, H.R., McClelland, J.R., Boone, D.J., Modat, M., Cardoso, M.J., Hampshire, T.E., Hu, M., Punwani, S., Ourselin, S., Slabaugh, G.G., Halligan, S., Hawkes, D.J.: Registration of the endoluminal surfaces of the colon derived from prone and supine CT colonography. Medical Physics 38(6), 3077–3089 (2011), http://link.aip.org/link/?MPH/38/3077/1 CrossRefGoogle Scholar
  10. 10.
    Suh, J.W., Wyatt, C.L.: Registration of prone and supine colons in the presence of topological changes. In: SPIE Med. Imaging: Physiology, Function, and Structure from Medical Images, vol. 6916(1), p. 69160C (2008)Google Scholar
  11. 11.
    Suh, J., Wyatt, C.: Deformable registration of supine and prone colons for computed tomographic colonography. J. Comput. Assist. Tomogr. 33(6), 902–911 (2009)CrossRefGoogle Scholar
  12. 12.
    Summers, R., Swift, J., Dwyer, A., Choi, J., Pickhardt, P.: Normalized distance along the colon centerline: a method for correlating polyp location on CT colonography and optical colonoscopy. Am. J. Roentgenol. 193(5), 1296–1304 (2009)CrossRefGoogle Scholar
  13. 13.
    de Vries, A., Truyen, R., Van der Peijl, J., Florie, J., van Gelder, R., Gerritsen, F., Stoker, J.: Feasibility of automated matching of supine and prone CT-colonography examinations. Br. J. Radiol. 79(945), 740–744 (2006)CrossRefGoogle Scholar
  14. 14.
    Wahba, G.: Spline models for observational data, vol. 59. Society for Industrial Mathematics (1990)Google Scholar
  15. 15.
    Wang, S., Yao, J., Liu, J., Petrick, N., Van Uitert, R., Periaswamy, S., Summers, R.: Registration of prone and supine CT colonography scans using correlation optimized warping and canonical correlation analysis. Med. Phys. 36(12), 5595–5603 (2009)CrossRefGoogle Scholar
  16. 16.
    Zeng, W., Marino, J., Chaitanya Gurijala, K., Gu, X., Kaufman, A.: Supine and prone colon registration using quasi-conformal mapping. IEEE Trans. Vis. Comput. Graphics 16(6), 1348–1357 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Holger R. Roth
    • 1
  • Jamie R. McClelland
    • 1
  • Thomas E. Hampshire
    • 1
  • Darren J. Boone
    • 2
  • Yipeng Hu
    • 1
  • Marc Modat
    • 1
  • Hui Zhang
    • 1
  • Sebastien Ourselin
    • 1
  • Steve Halligan
    • 2
  • David J. Hawkes
    • 1
  1. 1.Centre for Medical Image ComputingUniversity College LondonUK
  2. 2.Centre for Medical Imaging, Department of RadiologyUniversity College HospitalLondonUK

Personalised recommendations