A Statistical Shape Model for Multiple Organs Based on Synthesized-Based Learning

  • Atsushi Saito
  • Misaki Nakada
  • Elco Oost
  • Akinobu Shimizu
  • Hidefumi Watanabe
  • Shigeru Nawano
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8198)


This paper presents a statistical shape model for multiple abdominal organs using synthesized-based learning to compensate the lack of a large manually labeled training data set. Experiments on 23 non-contrast CT volumes showed that a model trained on both true and synthesized data, outperforms conventional shape models, in terms of generalization, specificity and overlap of neighboring organs.


Synthesized-based learning level set morphing statistical shape model multiple abdominal organs CT volume 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Park, H., Bland, P.H., Meyer, C.R.: Construction of an abdominal probabilistic atlas and its application in segmentation. IEEE Trans. Med. Imag. 22(4), 483–492 (2003)CrossRefGoogle Scholar
  2. 2.
    Shimizu, A., Ohno, R., Ikegami, T., Kobatake, H., Nawano, S.: Segmentation of multiple organs in non-contrast 3D abdominal CT images. IJCARS 2(3-4), 135–142 (2007)Google Scholar
  3. 3.
    Okada, T., Linguraru, M.G., Yoshida, Y., Hori, M., Summers, R.M., Chen, Y.-W., Tomiyama, N., Sato, Y.: Abdominal multi-organ segmentation of CT images based on hierarchical spatial modeling of organ interrelations. In: Yoshida, H., Sakas, G., Linguraru, M.G. (eds.) Abdominal Imaging 2011. LNCS, vol. 7029, pp. 173–180. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  4. 4.
    Linguraru, M.G., Pura, J.A., Pamulapati, V., Summers, R.M.: Statistical 4D graphs for multi-organ abdominal segmentation from multiphase CT. Med. Imag. Anal. 16(4), 904–914 (2012)CrossRefGoogle Scholar
  5. 5.
    Suzuki, M., Linguraru, M.G., Okada, K.: Multi-organ segmentation with missing organs in abdominal CT images. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part III. LNCS, vol. 7512, pp. 418–425. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  6. 6.
    Wolz, R., Chu, C., Misawa, K., Mori, K., Rueckert, D.: Multi-organ abdominal CT segmentation using hierarchically weighted subject-specific atlases. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part I. LNCS, vol. 7510, pp. 10–17. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  7. 7.
    Murase, H., Nayar, S.K.: Learning by a generation approach to appearance-based object recognition. In: Proc. of ICPR, vol. 1, pp. 25–29 (1996)Google Scholar
  8. 8.
    Breen, D.E., Whitaker, R.T.: A level set approach for the metamorphosis of solid models. IEEE Trans. on Vis. and Comp. Graph. 7(2), 173–192 (2001)CrossRefGoogle Scholar
  9. 9.
    Duta, N., Sonka, M.: Segmentation and interpretation of MR brain images: an improved active shape model. IEEE Trans. Med. Imag. 17(6), 1049–1062 (1988)CrossRefGoogle Scholar
  10. 10.
    Tsai, A., Wells, W., Tempany, C., Grimson, E., Willsky, A.: Mutual information in coupled multi-shape model for medical image segmentation. Med. Imag. Anal. 8(4), 429–445 (2004)CrossRefGoogle Scholar
  11. 11.
    Pohl, K.M., Fisher, J., Shenton, M.E., McCarley, R.W., Grimson, W.E.L., Kikinis, R., Wells, W.M.: Logarithm odds maps for shape representation. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4191, pp. 955–963. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Malcolm, J.A., Rathi, Y., Shenton, M.E., Tannenbaum, A.: Label space: A coupled multi-shape representation. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part II. LNCS, vol. 5242, pp. 416–424. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  13. 13.
    Changizi, N., Hamarneh, G.: Probabilistic multi-shape representation using an isometric log-ratio mapping. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010, Part III. LNCS, vol. 6363, pp. 563–570. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  14. 14.
    Shimizu, A., Nakada, M., Kobatake, H., Nawano, S.: Statistical shape models of multiple organs in an upper abdominal CT volume. International Journal of Computer Assisted Radiology and Surgery 4(supp. 1), S361 (2011)Google Scholar
  15. 15.
    Styner, M.A., Rajamani, K.T., Nolte, L.-P., Zsemlye, G., Székely, G., Taylor, C.J., Davies, R.H.: Evaluation of 3D correspondence methods for model building. In: Taylor, C.J., Noble, J.A. (eds.) IPMI 2003. LNCS, vol. 2732, pp. 63–75. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  16. 16.
    Motai, Y., Yoshida, H.: Principal composite kernel feature analysis: Data-dependent kernel approach. IEEE Trans. Knowl. Data Eng. 25(8), 1863–1875 (2013)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Atsushi Saito
    • 1
  • Misaki Nakada
    • 1
  • Elco Oost
    • 1
  • Akinobu Shimizu
    • 1
  • Hidefumi Watanabe
    • 1
  • Shigeru Nawano
    • 2
  1. 1.Tokyo University of Agriculture and TechnologyKoganeiJapan
  2. 2.Center for Radiological Science, Mita HopitalInternational University of Health and WelfareMinato-kuJapan

Personalised recommendations