Advertisement

Self Similarity Image Registration Based on Reorientation of the Hessian

  • Zhang Li
  • Lucas J. van Vliet
  • Frans M. Vos
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8198)

Abstract

The modality independent neighbourhood descriptor (MIND) is a local registration metric that is based on the principle of self-similarity. However, the metric requires recalculation of the self similarity during registration as this inherently changes during image deformation. We propose a self similarity registration method based on the Hessian (HE) that efficiently deals with the recalculation issue. The representation of the local self-similarity via the Hessian enables keeping it up to date during deformation. As such, the registration procedure is efficient and not prone to fall in local minima. We have shown that reorienting the hessian gives a significant improvement (p<0.05) over leaving the reorientation out. Our technique also has a better performance over the existing MIND method on the DIR-Lab dataset as well as on abdominal MRI datasets albeit not significant. Ultimately, we will use the technique to quantify Crohn’s disease severity based on the relative contrast enhancement in registered images.

Keywords

Image registration hessian reorientation Crohn’s disease 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Maes, F., Collignon, A., Vandermeulen, D., Marchal, G., Suetens, P.: Multimodality Image Registration by Maximization of Mutual Information. IEEE Transactions on Medical Imaging 16(2), 187–198 (1997)CrossRefGoogle Scholar
  2. 2.
    Viola, P., Wells III, W.M.: Alignment by Maximization of Mutual Information. International Journal of Computer Vision 24(2), 137–154 (1997)CrossRefGoogle Scholar
  3. 3.
    Pluim, J.P.W., Maintz, J.B.A., Viergever, M.A.: Mutual-Information-Based Registration of Medical Images: A Survey. IEEE Transactions on Medical Imaging 22(8), 986–1004 (2003)CrossRefGoogle Scholar
  4. 4.
    Loeckx, D., Slagmolen, P., Maes, F., Vandermeulen, D., Suetens, P.: Nonrigid Image Registration Using Conditional Mutual Information. IEEE Transactions on Medical Imaging 29(1), 19–29 (2010)CrossRefGoogle Scholar
  5. 5.
    Gorbunova, V., Lo, P., Ashraf, H., Dirksen, A., Nielsen, M., de Bruijne, M.: Weight Preserving Image Registration for Monitoring Disease Progression in Lung CT. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part II. LNCS, vol. 5242, pp. 863–870. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Song, G., Tustison, N., Avants, B., Gee, J.C.: Lung CT Image Registration Using Diffeomorphic Transformation Models. In: van Ginneken, B., Murphy, K., Heimann, T., Pekar, V., Deng, X. (eds.) Medical Image Analysis for the Clinic: A Grand Challenge, pp. 23–32. CreateSpace, Charleston (2010)Google Scholar
  7. 7.
    Yi, Z., Soatto, S.: Multimodal Registration via Spatial-Context Mutual Information. In: Székely, G., Hahn, H.K. (eds.) IPMI 2011. LNCS, vol. 6801, pp. 424–435. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  8. 8.
    Zhuang, X., Arridge, S., Hawkes, D.J., Ourselin, S.: A Nonrigid Registration Framework Using Spatially Encoded Mutual Information and Free-Form Deformations. IEEE Transactions on Medical Imaging 30(10), 1819–1828 (2011)CrossRefGoogle Scholar
  9. 9.
    Klein, S., van der Heide, U.A., Lips, I.M., van Vulpen, M., Staring, M., Pluim, J.P.: Automatic Segmentation of the Prostate in 3D MR Images by Atlas Matching Using Localized Mutual Information. Medical Physics 35(4), 1407–1417 (2008)CrossRefGoogle Scholar
  10. 10.
    Heinrich, M.P., Jenkinson, M., Bhushan, M., Matin, T., Gleeson, F.V., Brady, S.M., Schnabel, J.A.: MIND: Modality Independent Neighbourhood Descriptor for Multi-Modal Deformable Registration. Medical Image Analysis 16(7), 1423–1435 (2012)CrossRefGoogle Scholar
  11. 11.
    De Nigris, D., Collins, D., Arbel, T.: Multi-Modal Image Registration Based on Gradient Orientations of Minimal Uncertainty. IEEE Transactions on Medical Imaging 31(12), 2343–2354 (2012)CrossRefGoogle Scholar
  12. 12.
    Li, B., Li, X., Wang, K., Qin, H.: Surface Mesh to Volumetric Spline Conversion with Generalized Polycubes. IEEE Transactions on Visualization and Computer Graphics 19(9), 1539–1551 (2013)CrossRefGoogle Scholar
  13. 13.
    Heinrich, M.P., Jenkinson, M., Gleeson, F.V., Brady, S.M., Schnabel, J.A.: Deformable Multimodal Registration with Gradient Orientation Based on Structure Tensors. Annals of the British Machine Vision Association 5(2), 1–11 (2011)Google Scholar
  14. 14.
    Yeo, B.T., Vercauteren, T., Fillard, P., Peyrat, J.M., Pennec, X., Golland, P., Ayache, N., Clatz, O.: Dt-refind: Diffusion Tensor Registration with Exact Finite-Strain Differential. IEEE Transactions on Medical Imaging 28(12), 1914–1928 (2009)CrossRefGoogle Scholar
  15. 15.
    Castillo, R., Castillo, E., Guerra, R., Johnson, V.E., McPhail, T., Garg, A.K., Guerrero, T.: A Framework for Evaluation of Deformable Image Registration Spatial Accuracy Using Large Landmark Point Sets. Physics in Medicine and Biology 54(7), 1849–1870 (2009)CrossRefGoogle Scholar
  16. 16.
    Ziech, M., Lavini, C., Caan, M., Nio, C., Stokkers, P., Bipat, S., Ponsioen, C., Nederveen, A., Stoker, J.: Dynamic Contrast-Enhanced MRI in Patients with Luminal Crohn’s Disease. European Journal of Radiology 81(11), 3019–3027 (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Zhang Li
    • 1
  • Lucas J. van Vliet
    • 1
  • Frans M. Vos
    • 1
    • 2
  1. 1.Quantitative Imaging Group, Department of Imaging Science and TechnologyDelft University of TechnologyDelftThe Netherlands
  2. 2.Department of RadiologyAcademic Medical CenterAmsterdamThe Netherlands

Personalised recommendations