Rib Detection in 3D MRI Using Dynamic Programming Based on Vesselness and Ridgeness

  • Yolanda H. Noorda
  • Lambertus W. Bartels
  • Max A. Viergever
  • Josien P. W. Pluim
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8198)


In this paper, a fully automatic method is proposed to detect the ribs in 3D MRI. The purpose of the detection is MR-guided HIFU treatment of liver lesions, in which the ribs should be avoided. Rib segmentations are required for treatment planning and they may also be used for motion tracking during treatment. The rib detection results can serve as an initialization to automatic rib cage segmentation. The algorithm is based on surface detection and dynamic programming. First, the outer surface of the rib cage is detected. Vesselness and ridgeness are computed to highlight elongated structures. The ribs are tracked simultaneously on a 2D projection of the vesselness in the surface, using dynamic programming. Finally, the extracted lines are backprojected into the original 3D volume. Preliminary results of this algorithm are presented on data of five subjects. The results were evaluated by visual inspection of the backprojected lines in 3D. It was checked whether a line belonged to the correct rib and whether it stayed inside this rib. Overall, our algorithm was capable of detecting the ribs that were visible in the images. Testing on five volunteers yielded one failure. The remaining four results were satisfactory. Our method seems suitable to serve as initialization to a full rib cage segmentation in MRI.


Ribs segmentation detection MRI vesselness ridgeness dynamic programming image-guided therapy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Quesson, B., Merle, M., Köhler, M.O., Mougenot, C., Roujol, S., De Senneville, B.D., Moonen, C.T.: A Method for MRI Guidance of Intercostal High Intensity Focused Ultrasound Ablation in the Liver. Med. Phys. 37, 2533–2540 (2010)CrossRefGoogle Scholar
  2. 2.
    Klinder, T., Lorenz, C., von Berg, J., Dries, S.P.M., Bülow, T., Ostermann, J.: Automated Model-Based Rib Cage Segmentation and Labeling in CT Images. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part II. LNCS, vol. 4792, pp. 195–202. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    Staal, J., van Ginneken, B., Viergever, M.A.: Automatic Rib Segmentation and Labeling in Computed Tomography Scans Using a General Framework for Detection, Recognition and Segmentation of Objects in Volumetric Data. Med. Image Anal. 11, 35–46 (2007)CrossRefGoogle Scholar
  4. 4.
    van Ginneken, B., ter Haar Romeny, B.: Automatic Segmentation of Lung Fields in Chest Radiographs. Med. Phys. 27, 2445–2455 (2000)CrossRefGoogle Scholar
  5. 5.
    Xu, X.-W., Doi, K.: Image Feature Analysis for Computer-Aided Diagnosis: Accurate Determination of Ribcage Boundary in Chest Radiographs. Med. Phys. 22, 617–626 (1995)CrossRefGoogle Scholar
  6. 6.
    Lorigo, L.M., Faugeras, O., Grimson, W.E.L., Keriven, R., Kikinis, R.: Segmentation of Bone in Clinical Knee MRI Using Texture-Based Geodesic Active Contours. In: Wells, W.M., Colchester, A., Delp, S. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 1195–1204. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  7. 7.
    Schmid, J., Magnenat-Thalmann, N.: MRI Bone Segmentation Using Deformable Models and Shape Priors. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part I. LNCS, vol. 5241, pp. 119–126. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Zhang, K., Lu, W.: Automatic Human Knee Cartilage Segmentation from Multi-contrast MR Images Using Extreme Learning Machines and Discriminative Random Fields. In: Suzuki, K., Wang, F., Shen, D., Yan, P. (eds.) MLMI 2011. LNCS, vol. 7009, pp. 335–343. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  9. 9.
    Yin, Y., Zhang, X., Williams, R., Wu, X., Anderson, D.D., Sonka, M.: LOGISMOS – Layered Optimal Graph Image Segmentation of Multiple Objects and Surfaces: Cartilage Segmentation in the Knee Joint. IEEE T. Med. Imaging 29, 2023–2037 (2010)CrossRefGoogle Scholar
  10. 10.
    Frangi, A.F., Niessen, W.J., Vincken, K.L., Viergever, M.A.: Multiscale Vessel Enhancement Filtering. In: Wells, W.M., Colchester, A., Delp, S. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 130–137. Springer, Heidelberg (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Yolanda H. Noorda
    • 1
  • Lambertus W. Bartels
    • 1
  • Max A. Viergever
    • 1
  • Josien P. W. Pluim
    • 1
  1. 1.Image Sciences InstituteUniversity Medical Center UtrechtUtrechtThe Netherlands

Personalised recommendations