Advertisement

Selective Search and Sequential Detection for Standard Plane Localization in Ultrasound

  • Dong Ni
  • Tianmei Li
  • Xin Yang
  • Jing Qin
  • Shengli Li
  • Chien-Ting Chin
  • Shuyuan Ouyang
  • Tianfu Wang
  • Siping Chen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8198)

Abstract

We present the first automatic solution for localizing fetal abdominal standard plane (FASP) in consecutive 2D ultrasound images. FASP is located in the presence of three key anatomies detected by learning based algorithms, including stomach bubble (SB), umbilical vein (UV), and spine (SP). Traditional detection methods exhaustively scanning the entire image with sliding window algorithms tend not to perform well, since large numbers of regions appear similar to key anatomies. We propose a novel approach by applying local detectors sequentially on the preselected locations of SB, SP and UV. Specifically, we employ segmentation to generate probable locations for SB detection while exploiting a novel accumulative vessel probability algorithm to produce probable locations for SP and UV detection. The sequential scheme automatically excludes detected regions in former steps for subsequent detection, and further limits the search range according to the geometric relationship among anatomies. Experimental results on 100 fetal abdomen videos show that our method significantly outperforms traditional methods that only use local detector.

Keywords

Ultrasound standard plane anatomy detection AdaBoost selective search sequential detection vessel probability map 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lu, X., Georgescu, B., Zheng, Y., Otsuki, J., Comaniciu, D.: Autompr: Automatic detection of standard planes in 3d echocardiography. In: 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, ISBI 2008, pp. 1279–1282. IEEE (2008)Google Scholar
  2. 2.
    Carneiro, G., Amat, F., Georgescu, B., Good, S., Comaniciu, D.: Semantic-based indexing of fetal anatomies from 3-d ultrasound data using global/semi-local context and sequential sampling. In: CVPR 2008, pp. 1–8 (2008)Google Scholar
  3. 3.
    Rahmatullah, B., Papageorghiou, A., Noble, J.A.: Automated selection of standardized planes from ultrasound volume. In: Suzuki, K., Wang, F., Shen, D., Yan, P. (eds.) MLMI 2011. LNCS, vol. 7009, pp. 35–42. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  4. 4.
    Elliott, S.T.: Volume ultrasound: the next big thing? British Journal of Radiology 81(96), 8–9 (2008)Google Scholar
  5. 5.
    Zhang, L., Chen, S., Chin, C.T., Wang, T., Li, S.: Intelligent scanning: Automated standard plane selection and biometric measurement of early gestational sac in routine ultrasound examination. Medical Physics 39(8), 5015–5027 (2012)CrossRefGoogle Scholar
  6. 6.
    Rahmatullah, B., Sarris, I., Papageorghiou, A., Noble, J.: Quality control of fetal ultrasound images: Detection of abdomen anatomical landmarks using adaboost. In: ISBI 2011, pp. 6–9 (2011)Google Scholar
  7. 7.
    Liu, X., Annangi, P., et al.: Learning-based scan plane identification from fetal head ultrasound images. SPIE Conference Series, p. 8320 (2012)Google Scholar
  8. 8.
    Rahmatullah, B., Papageorghiou, A., Noble, J.: Integration of local and global features for anatomical object detection in ultrasound. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part III. LNCS, vol. 7512, pp. 402–409. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  9. 9.
    Dudley, N.J., Chapman, E.: The importance of quality management in fetal measurement. Ultrasound in Obstetrics and Gynecology 19(2), 190–196 (2002)CrossRefGoogle Scholar
  10. 10.
    Viola, P., Jones, M.J.: Robust real-time face detection. International Journal of Computer Vision 57, 137–154 (2004)CrossRefGoogle Scholar
  11. 11.
    Girard, M.J.A., Strouthidis, N.G., et al.: Shadow removal and contrast enhancement in optical coherence tomography images of the human optic nerve head. Investigative Ophthalmology & Visual Science 52(10), 7738–7748 (2011)CrossRefGoogle Scholar
  12. 12.
    Yu, Y., Acton, S.: Speckle reducing anisotropic diffusion. IEEE Transactions on Image Processing 11(11), 1260–1270 (2002)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man and Cybernetics 9(1), 62–66 (1979)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Penney, G., Blackall, J., Hamady, M., et al.: Registration of freehand 3d ultrasound and magnetic resonance liver images. Medical Image Analysis 8(1), 81–91 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Dong Ni
    • 1
  • Tianmei Li
    • 1
  • Xin Yang
    • 1
  • Jing Qin
    • 2
  • Shengli Li
    • 3
  • Chien-Ting Chin
    • 1
  • Shuyuan Ouyang
    • 1
  • Tianfu Wang
    • 1
  • Siping Chen
    • 1
  1. 1.National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of MedicineShenzhen UniversityShenzhenP.R.China
  2. 2.Center for Human Computer InteractionShenzhen Institute of Advanced Integration TechnologyShenzhenP.R.China
  3. 3.Department of UltrasoundAffiliated Shenzhen Maternal and Child Healthcare Hospital of Nanfang Medical UniversityShenzhenP.R.China

Personalised recommendations