3D Surface Reconstruction of Organs Using Patient-Specific Shape Priors in Robot-Assisted Laparoscopic Surgery

  • Alborz Amir-Khalili
  • Jean-Marc Peyrat
  • Ghassan Hamarneh
  • Rafeef Abugharbieh
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8198)


With the advent of robot-assisted laparoscopic surgery (RALS), intra-operative stereo endoscopy is becoming a ubiquitous imaging modality in abdominal interventions. This high resolution intra-operative imaging modality enables the reconstruction of 3D soft-tissue surface geometry with the help of computer vision techniques. This reconstructed surface is a prerequisite for many clinical applications such as image-guidance with cross-modality registration, telestration, expansion of the surgical scene by stitching/mosaicing, and collision detection. Reconstructing the surface geometry from camera information alone remains a very challenging problem in RALS mainly due to a small baseline between the optical centres of the cameras, presence of blood and smoke, specular highlights, occlusion, and smooth/textureless regions. In this paper, we propose a method for increasing the overall surface reconstruction accuracy by incorporating patient specific shape priors extracted from pre-operative images. Our method is validated on an in silico phantom and we show that the combination of both pre-operative and intra-operative data significantly improves surface reconstruction as compared to the ground truth. Finally, we verify the clinical potential of the proposed method in the context of abdominal surgery in a phantom study of an ex vivo lamb kidney.


Surface reconstruction computational stereo shape prior robot-assisted minimally invasive surgery 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hartley, R., Zisserman, A.: Multiple view geometry in computer vision, 2nd edn. Cambridge Univ. Press (2004)Google Scholar
  2. 2.
    Maier-Hein, L., Mountney, P., Bartoli, A., Elhawary, H., Elson, D., Groch, A., Kolb, A., Rodrigues, M., Sorger, J., Speidel, S., Stoyanov, D.: Optical techniques for 3d surface reconstruction in computer-assisted laparoscopic surgery. Medical Image Analysis 17(8), 974–996 (2013)CrossRefGoogle Scholar
  3. 3.
    Guru, K.A., Hussain, A., Chandrasekhar, R., Piacente, P., Bienko, M., Glasgow, M., Underwood, W., Wilding, G., Mohler, J.L., Menon, M., Peabody, J.O.: Current status of robot-assisted surgery in urology: a multi-national survey of 297 urologic surgeons. The Canadian Journal of Urology 16(4), 4736–4741 (2009)Google Scholar
  4. 4.
    Stoyanov, D., Scarzanella, M.V., Pratt, P., Yang, G.-Z.: Real-time stereo reconstruction in robotically assisted minimally invasive surgery. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010, Part I. LNCS, vol. 6361, pp. 275–282. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Pratt, P., Stoyanov, D., Visentini-Scarzanella, M., Yang, G.-Z.: Dynamic guidance for robotic surgery using image-constrained biomechanical models. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010, Part I. LNCS, vol. 6361, pp. 77–85. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  6. 6.
    Pollefeys, M., Koch, R., Van Gool, L.: A simple and efficient rectification method for general motion. In: ICCV, pp. 496–501 (1999)Google Scholar
  7. 7.
    Bernhardt, S., Abi-Nahed, J., Abugharbieh, R.: Robust dense endoscopic stereo reconstruction for minimally invasive surgery. In: Menze, B.H., Langs, G., Lu, L., Montillo, A., Tu, Z., Criminisi, A. (eds.) MCV 2012. LNCS, vol. 7766, pp. 254–262. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  8. 8.
    Röhl, S., Bodenstedt, S., Suwelack, S., Kenngott, H., Müller-Stich, B., Dillmann, R., Speidel, S.: Real-time surface reconstruction from stereo endoscopic images for intraoperative registration. In: Proc. SPIE, vol. 7964, p. 796414 (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Alborz Amir-Khalili
    • 1
  • Jean-Marc Peyrat
    • 2
  • Ghassan Hamarneh
    • 3
  • Rafeef Abugharbieh
    • 1
  1. 1.Biomedical Signal and Image Computing LabUniversity of British ColumbiaVancouverCanada
  2. 2.Qatar Robotic Surgery CentreQatar Science and Technology Park, Education CityDohaQatar
  3. 3.Medical Image Analysis LabSimon Fraser UniversityBurnabyCanada

Personalised recommendations