Spatially Constrained Incoherent Motion (SCIM) Model Improves Quantitative Diffusion-Weighted MRI Analysis of Crohn’s Disease Patients

  • Vahid Taimouri
  • Moti Freiman
  • Onur Afacan
  • Simon K. Warfield
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8198)


Quantitative analysis of fast and slow diffusion from abdominal Diffusion-weighted MRI has the potential to provide important new insights into physiological and microstructural properties of the body. However, the commonly used, independent voxel-wise fitting of the signal decay model leads to imprecise parameter estimates, which has hampered their practical usage. In this work we evaluated the improvement in the precision of the fast and slow diffusion parameter estimates achieved by using a spatially-constrained Incoherent Motion (SCIM) model of DW-MRI signal decay in 5 healthy subjects and 24 Crohn’s disease patients. We found that the improvement in Coefficient of Variation (CV) of the parameter estimates achieved using the SCIM model was significantly larger compared to thus achieved by repeated acquisition and signal averaging (n=5, paired Student’s t-test, p ≤ 0.05). We also found that the SCIM model reduced the coefficient of variation of the parameter estimates of the D * and f parameter estimates in the ileum by 30% compared to the independent voxel-wise fitting of the signal decay model in the Crohn’s patients data (n=24, paired Student’s t-test, p ≤ 0.05). The SCIM model is more precise for quantitative analysis of abdominal DW-MRI signal decay.


Diffusion-weighted imaging Crohn’s disease intra-voxel incoherent motion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Le Bihan, D.: Intravoxel incoherent motion perfusion MR imaging: a wake-up call. Radiology 249(3), 748–752 (2008)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Le Bihan, D., Breton, E., Lallemand, D., Aubin, M.L., Vignaud, J., Laval-Jeantet, M.: Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology 168(2), 497–505 (1988)Google Scholar
  3. 3.
    Koh, D.M., Collins, D.J., Orton, M.R.: Intravoxel incoherent motion in body diffusion-weighted MRI: reality and challenges. AJR Am. J. Roentgenol. 196(6), 1351–1361 (2011)CrossRefGoogle Scholar
  4. 4.
    Sigmund, E.E., Cho, G.Y., Kim, S., Finn, M., Moccaldi, M., Jensen, J.H., Sodickson, D.K., Goldberg, J.D., Formenti, S., Moy, L.: Intravoxel incoherent motion imaging of tumor microenvironment in locally advanced breast cancer. Magn. Reson. Med. 65(5), 1437–1447 (2011)CrossRefGoogle Scholar
  5. 5.
    Re, T.J., Lemke, A., Klauss, M., Laun, F.B., Simon, D., Grunberg, K., Delorme, S., Grenacher, L., Manfredi, R., Mucelli, R.P., Stieltjes, B.: Enhancing pancreatic adenocarcinoma delineation in diffusion derived intravoxel incoherent motion f-maps through automatic vessel and duct segmentation. Magn. Reson. Med. 66(5), 1327–1332 (2011)CrossRefGoogle Scholar
  6. 6.
    Klauss, M., Lemke, A., Grunberg, K., Simon, D., Re, T.J., Wente, M.N., Laun, F.B., Kauczor, H.U., Delorme, S., Grenacher, L., Stieltjes, B.: Intravoxel incoherent motion MRI for the differentiation between mass forming chronic pancreatitis and pancreatic carcinoma. Invest. Radiol. 46(1), 57–63 (2011)CrossRefGoogle Scholar
  7. 7.
    Chandarana, H., Lee, V.S., Hecht, E., Taouli, B., Sigmund, E.E.: Comparison of biexponential and monoexponential model of diffusion weighted imaging in evaluation of renal lesions: preliminary experience. Invest. Radiol. 46(5), 285–291 (2011)Google Scholar
  8. 8.
    Gloria, C., Li, Q., Xu, L., Zhang, W.: Differentiation of diffusion coefficients to distinguish malignant and benign tumor. J. Xray Sci. Technol. 18(3), 235–249 (2010)Google Scholar
  9. 9.
    Lemke, A., Laun, F.B., Klauss, M., Re, T.J., Simon, D., Delorme, S., Schad, L.R., Stieltjes, B.: Differentiation of pancreas carcinoma from healthy pancreatic tissue using multiple b-values: comparison of apparent diffusion coefficient and intravoxel incoherent motion derived parameters. Invest. Radiol. 44(12), 769–775 (2009)CrossRefGoogle Scholar
  10. 10.
    Luciani, A., Vignaud, A., Cavet, M., Nhieu, J.T., Mallat, A., Ruel, L., Laurent, A., Deux, J.F., Brugieres, P., Rahmouni, A.: Liver cirrhosis: intravoxel incoherent motion MR imaging–pilot study. Radiology 249(3), 891–899 (2008)CrossRefGoogle Scholar
  11. 11.
    Patel, J., Sigmund, E.E., Rusinek, H., Oei, M., Babb, J.S., Taouli, B.: Diagnosis of cirrhosis with intravoxel incoherent motion diffusion MRI and dynamic contrast-enhanced MRI alone and in combination: preliminary experience. J. Magn. Reson. Imaging 31(3), 589–600 (2010)CrossRefGoogle Scholar
  12. 12.
    Freiman, M., Perez-Rossello, J.M., Callahan, M.J., Bittman, M., Mulkern, R.V., Bousvaros, A., Warfield, S.K.: Characterization of fast and slow diffusion from diffusion-weighted MRI of pediatric Crohn’s disease. J. Magn. Reson. Imaging 37(1), 156–163 (2013), CrossRefGoogle Scholar
  13. 13.
    Freiman, M., Perez-Rossello, J.M., Callahan, M.J., Voss, S.D., Ecklund, K., Mulkern, R.V., Warfield, S.K.: Reliable estimation of incoherent motion parametric maps from diffusion-weighted MRI using fusion bootstrap moves. Med. Image Anal. 17(3), 325–336 (2013), CrossRefGoogle Scholar
  14. 14.
    Freiman, M., Voss, S.D., Mulkern, R.V., Perez-Rossello, J.M., Callahan, M.J., Warfield, S.K.: Reliable Assessment of Perfusivity and Diffusivity from Diffusion Imaging of the Body. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part I. LNCS, vol. 7510, pp. 1–9. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  15. 15.
    Dietrich, O., Raya, J.G., Reeder, S.B., Ingrisch, M., Reiser, M.F., Schoenberg, S.O.: Influence of multichannel combination, parallel imaging and other reconstruction techniques on MRI noise characteristics. Magn. Reson. Imaging 26(6), 754–762 (2008)CrossRefGoogle Scholar
  16. 16.
    Lemke, A., Stieltjes, B., Schad, L.R., Laun, F.B.: Toward an optimal distribution of b values for intravoxel incoherent motion imaging. Magn. Reson. Imaging 29(6), 766–776 (2011)CrossRefGoogle Scholar
  17. 17.
    Yamada, I., Aung, W., Himeno, Y., Nakagawa, T., Shibuya, H.: Diffusion coefficients in abdominal organs and hepatic lesions: evaluation with intravoxel incoherent motion echo-planar MR imaging. Radiology 210(3), 617–623 (1999)CrossRefGoogle Scholar
  18. 18.
    Freiman, M., Voss, S.D., Mulkern, R.V., Perez-Rossello, J.M., Callahan, M.J., Warfield, S.K.: In vivo assessment of optimal b-value range for perfusion-insensitive apparent diffusion coefficient imaging. Medical Physics 39, 4832 (2012)CrossRefGoogle Scholar
  19. 19.
    Winkler, G.: Image Analysis, Random Fields and Dynamic Monte Carlo Methods, 2nd edn. Springer, New York (2003)CrossRefGoogle Scholar
  20. 20.
    Conturo, T.E., McKinstry, R.C., Akbudak, E., Robinson, B.H.: Encoding of anisotropic diffusion with tetrahedral gradients: a general mathematical diffusion formalism and experimental results. Magn. Reson. Med. 35(3), 399–412 (1996)CrossRefGoogle Scholar
  21. 21.
    Mulkern, R.V., Vajapeyam, S., Robertson, R.L., Caruso, P.A., Rivkin, M.J., Maier, S.E.: Biexponential apparent diffusion coefficient parametrization in adult vs newborn brain. Magn. Reson. Imaging 19(5), 659–668 (2001)CrossRefGoogle Scholar
  22. 22.
    Davidson, R., Flachaire, E.: The wild bootstrap, tamed at last. Journal of Econometrics 146(1), 162–169 (2008)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Freiman, M., Voss, S.D., Mulkern, R.V., Perez-Rossello, J.M., Warfield, S.K.: Quantitative Body DW-MRI Biomarkers Uncertainty Estimation Using Unscented Wild-Bootstrap. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part II. LNCS, vol. 6892, pp. 74–81. Springer, Heidelberg (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Vahid Taimouri
    • 1
  • Moti Freiman
    • 1
  • Onur Afacan
    • 1
  • Simon K. Warfield
    • 1
  1. 1.Computational Radiology LaboratoryBoston Children’s Hospital,Harvard Medical SchoolBostonUSA

Personalised recommendations