Advertisement

Multiphase Liver Registration from Geodesic Distance Maps and Biomechanical Modelling

  • Jordan Bano
  • Stéphane A. Nicolau
  • Alexandre Hostettler
  • Christophe Doignon
  • Jacques Marescaux
  • Luc Soler
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8198)

Abstract

Preoperative planning for surgery is usually performed according to multiphase CT acquisitions: liver arteries and liver veins are provided from two different contrasted CT images. However, these images must be registered as they are acquired at breath hold, which are usually not identical. In this paper, we tackle this issue by providing a non-rigid registration method between the 3D liver models extracted from both preoperative images. This method is based on geodesic distance maps according to relevant landmarks and is divided in two steps: an original deformation field computation on liver surface according to geodesic distance and a biomechanical deformation of a volume mesh using our deformation field. We evaluate our method using four sets of images illustrating our clinical context. Results show that the average registration accuracy is below 1 mm for liver surface and within 5 mm for liver vessels.

Keywords

Registration liver multiphase geodesic distance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Garcia, M., et al.: Global cancer facts & figures 2007, vol. 1(3). American Cancer Society, Atlanta (2007)Google Scholar
  2. 2.
    Soler, L., et al.: Computer-assisted operative procedure: from preoperative planning to simulation. European Clinics in Obstetrics and Gynaecology 2(4), 201–208 (2006)CrossRefGoogle Scholar
  3. 3.
    Lange, T., et al.: Registration of different phases of contrast-enhanced ct/mri data for computer-assisted liver surgery planning: Evaluation of state-of-the-art methods. The International Journal of Medical Robotics and Computer Assisted Surgery 1(3), 6–20 (2005)CrossRefGoogle Scholar
  4. 4.
    Zhu, Z., et al.: Non-rigid registration of multiphase contrast-enhanced abdomen ct image. In: 2011 6th International Conference on Computer Sciences and Convergence Information Technology (ICCIT), pp. 909–914. IEEE (2011)Google Scholar
  5. 5.
    Zhu, W., Nicolau, S., Soler, L., Hostettler, A., Marescaux, J., Rémond, Y.: Fast segmentation of abdominal wall: Application to sliding effect removal for non-rigid registration. In: Yoshida, H., Hawkes, D., Vannier, M.W. (eds.) Abdominal Imaging 2012. LNCS, vol. 7601, pp. 198–207. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  6. 6.
    Kwon, D.: et al.: Efficient feature-based nonrigid registration of multiphase liver ct volumes. In: BMVC 2008 (2008)Google Scholar
  7. 7.
    Cao, Y., et al.: An efficient feature-based non-rigid registration of multiphase liver ct images using matching region partition. In: 2010 The 5th IEEE Conference on Industrial Electronics and Applications, pp. 1657–1661. IEEE (2010)Google Scholar
  8. 8.
    Heldmann, S., et al.: Elastic registration of multiphase ct images of liver. In: SPIE Medical Imaging, p. 72591H. International Society for Optics and Photonics (2009)Google Scholar
  9. 9.
    Drechsler, K., et al.: Multiphase risk assessment of atypical liver resections. In: 2012 25th International Symposium on Computer-Based Medical Systems (CBMS), pp. 1–4. IEEE (2012)Google Scholar
  10. 10.
    Samani, A., et al.: Biomechanical 3-d finite element modeling of the human breast using mri data. IEEE Transactions on Medical Imaging 20(4), 271–279 (2001)CrossRefGoogle Scholar
  11. 11.
    Cash, D.M., et al.: Compensating for intraoperative soft-tissue deformations using incomplete surface data and finite elements. IEEE Transactions on Medical Imaging 24(11), 1479–1491 (2005)CrossRefGoogle Scholar
  12. 12.
    Wang, Y., et al.: 3d brain surface matching based on geodesics and local geometry. Computer Vision and Image Understanding 89(2), 252–271 (2003)CrossRefGoogle Scholar
  13. 13.
    Cho, Y., et al.: A multi-resolution scheme for distortion-minimizing mapping between human subcortical structures based on geodesic construction on riemannian manifolds. NeuroImage 57(4), 1376–1392 (2011)CrossRefGoogle Scholar
  14. 14.
    Bronstein, A., et al.: Generalized multidimensional scaling: a framework for isometry-invariant partial surface matching. Proceedings of the National Academy of Sciences of the United States of America 103(5), 1168–1172 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Samur, E., et al.: A robotic indenter for minimally invasive characterization of soft tissues. In: International Congress Series, vol. 1281, pp. 713–718 (2005)Google Scholar
  16. 16.
    Bano, J., et al.: Registration of preoperative liver model for laparoscopic surgery from intraoperative 3d acquisition, pp. 201–211 (to appear, 2013)Google Scholar
  17. 17.
    Boyer, E., Bronstein, A.M., Bronstein, M.M., Bustos, B., Darom, T., Horaud, R., Hotz, I., Keller, Y., Keustermans, J., Kovnatsky, A., et al.: Shrec 2011: robust feature detection and description benchmark. In: Proceedings of the 4th Eurographics Conference on 3D Object Retrieval, pp. 71–78. Eurographics Association (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jordan Bano
    • 1
    • 2
  • Stéphane A. Nicolau
    • 1
  • Alexandre Hostettler
    • 1
  • Christophe Doignon
    • 2
  • Jacques Marescaux
    • 1
    • 3
  • Luc Soler
    • 1
    • 3
  1. 1.IRCAD, Virtual-SurgStrasbourg CedexFrance
  2. 2.ICube (UMR 7357 CNRS)Illkirch CedexFrance
  3. 3.IHU, Institut Hospitalo-UniversitaireStrasbourg CedexFrance

Personalised recommendations