Advertisement

Free-Form Registration Involving Disappearing Structures: Application to Brachytherapy MRI

  • Floris F. Berendsen
  • Alexis N. T. J. Kotte
  • Astrid A. C. de Leeuw
  • Max A. Viergever
  • Josien P. W. Pluim
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8198)

Abstract

Registration of two images is difficult if large deformations are induced due to the absence of a structure in one image. We propose a penalty term that minimizes the volume of the missing structure in one image during free-form registration. The registration optimum found is based on image similarity, provided that the missing volume is minimal. We demonstrate our method on cervical MR images for brachytherapy. The intrapatient registration problem involves one image in which a therapy applicator is present and one in which it is not. Experiments show improvement of registration when including the penalty term. The improvements of surface distance and overlap of the bladder and rectum (which are close to the applicator volume) provide proof of principle of our method.

Keywords

registration regularization missing correspondence surface mesh 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nithiananthan, S., Schafer, S., Mirota, D.J., Stayman, J.W., Zbijewski, W., Reh, D.D., Gallia, G.L., Siewerdsen, J.H.: Extra-dimensional Demons: a method for incorporating missing tissue in deformable image registration. Med. Phys. 39(9), 5718–5731 (2012)CrossRefGoogle Scholar
  2. 2.
    Periaswamy, S., Farid, H.: Medical image registration with partial data. Med. Image Anal. 10(3), 452–464 (2006)CrossRefGoogle Scholar
  3. 3.
    Gu, Z., Qin, B.: Nonrigid Registration of Brain Tumor Resection MR Images Based on Joint Saliency Map and Keypoint Clustering. Sensors 9(12), 10270–10290 (2009)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Risholm, P., Samset, E., Talos, I.-F., Wells, W.: A non-rigid registration framework that accommodates resection and retraction. In: Prince, J.L., Pham, D.L., Myers, K.J. (eds.) IPMI 2009. LNCS, vol. 5636, pp. 447–458. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Chitphakdithai, N., Duncan, J.S.: Non-rigid registration with missing correspondences in preoperative and postresection brain images. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010, Part I. LNCS, vol. 6361, pp. 367–374. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  6. 6.
    Zacharaki, E.I., Hogea, C.S., Shen, D., Biros, G., Davatzikos, C.: Non-diffeomorphic registration of brain tumor images by simulating tissue loss and tumor growth. Neuroimage 46(3), 762–774 (2009)CrossRefGoogle Scholar
  7. 7.
    Miga, M.I., Roberts, D.W., Kennedy, F.E., Platenik, L.A., Hartov, A., Lunn, K.E., Paulsen, K.D.: Modeling of retraction and resection for intraoperative updating of images. Neurosurgery 49(1), 75–84 (2001)Google Scholar
  8. 8.
    Vigneron, L.M., Noels, L., Warfield, S.K., Verly, J.G., Robe, P.A.: Serial FEM/XFEM-Based Update of Preoperative Brain Images Using Intraoperative MRI. Int. J. Biomed. Imaging 2012, 872783 (2012)Google Scholar
  9. 9.
    Klein, S., Staring, M., Murphy, K., Viergever, M.A., Pluim, J.P.: elastix: a toolbox for intensity-based medical image registration. IEEE Trans. Med. Imaging 29(1), 196–205 (2010)CrossRefGoogle Scholar
  10. 10.
    Commandeur, F., Velut, J., Acosta, O.: A VTK algorithm for the computation of the Hausdorff distance. Midas Journal (September 2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Floris F. Berendsen
    • 1
  • Alexis N. T. J. Kotte
    • 2
  • Astrid A. C. de Leeuw
    • 2
  • Max A. Viergever
    • 1
  • Josien P. W. Pluim
    • 1
  1. 1.Image Sciences InstituteUniversity Medical Center UtrechtUtrechtThe Netherlands
  2. 2.Department of RadiotherapyUniversity Medical Center UtrechtUtrechtThe Netherlands

Personalised recommendations