Iterative Reconstruction for Ultra-Low-Dose Laxative-Free CT Colonography

  • Synho Do
  • Janne J. Näppi
  • Hiroyuki Yoshida
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8198)


Iterative reconstruction (IRT) makes it possible to acquire computed tomographic colonography (CTC) images at <50% of the radiation dose of conventional standard-dose filtered back-projection (FBP) without impairing image quality. It has also other significant advantages over FBP, including better noise suppression, reduction of image artifacts, and flexible mathematical formulation. In this pilot study, we explored the potential application of IRT in the implementation of an ultra-low-dose (ULD) laxative-free CTC examination. First, CTC images are reconstructed approximately with FBP to detect regions of fecal tagging and other high-density objects that can generate image artifacts. Next, the detected regions are projected to sinogram domain to guide the IRT process for the minimization of image noise, correction of beam-hardening artifacts, and virtual cleansing of fecal-tagged regions. For pilot evaluation, five patients were prepared for an ULD dual-energy CTC examination by use of non-cathartic dietary fecal tagging with iodine. For one patient, the CTC images were reconstructed by use of both the FBP and IRT methods. Preliminary results showed that the IRT-reconstructed images demonstrated superior image quality over the FBP-reconstructed images.


Iterative reconstruction non-cathartic dose radiation virtual colonoscopy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gluecker, T., Johnson, C., Harmsen, W., Offord, K., Harris, A., et al.: Colorectal cancer screening with CT colonography, colonoscopy, and double-contrast barium enema examination: prospective assessment of patient perceptions and preferences. Radiology 227, 378–384 (2003)CrossRefGoogle Scholar
  2. 2.
    Zalis, M., Blake, M., Cai, W., Hahn, P., et al.: Diagnostic accuracy of laxative-free computed tomographic colonography for detection of adenomatous polyps in asymptomatic adults: a prospective evaluation. Ann. Intern. Med. 156, 692–702 (2012)CrossRefGoogle Scholar
  3. 3.
    Chang, K., Yee, J.: Dose reduction methods for CT colonography. Abdom. Imaging 38, 224–232 (2013)CrossRefGoogle Scholar
  4. 4.
    Xu, Y., He, W., Chen, H., Hu, Z., Li, J., Zhang, T.: Impact of the adaptive statistical iterative reconstruction technique on image quality in ultra-low-dose CT. Clin. Radiol. (2013)Google Scholar
  5. 5.
    Boellaard, T., Venema, H., Streekstra, G., Stoker, J.: Effective radiation dose in CT colonography: is there a downward trend? Acad. Radiol. 19, 1127–1133 (2012)CrossRefGoogle Scholar
  6. 6.
    Boas, F., Fleischmann, D.: CT artifacts: causes and reduction techniques. Imaging Med. 4, 229–240 (2012)CrossRefGoogle Scholar
  7. 7.
    Do, S., Karl, W., Liang, Z., Kalra, M., Brady, T., Pien, H.: A decomposition-based CT reconstruction formulation for reducing blooming artifacts. Phys. Med. Biol. 56, 7109–7125 (2011)CrossRefGoogle Scholar
  8. 8.
    Chan, T., Mulet, P.: On the convergence of the lagged diffusivity fixed point method in total variation image restoration. SIAM J. Numer. Anal. 36, 354–367 (1999)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Siddon, R.: Fast calculation of the extract radiological path for a three-dimensional CT array. Med. Phys. 12, 252 (1985)CrossRefGoogle Scholar
  10. 10.
    Do, S., Cho, S., Karl, W., Kalra, M., Brady, T., Pien, H.: Accurate model-based high resolution cardiac image reconstruction in dual source CT. In: IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp. 330–333. IEEE Press, Boston (2009)Google Scholar
  11. 11.
    Hsieh, J., Molthen, R., Dawson, C., Johnson, R.: An iterative approach to the beam hardening correction in cone beam CT. Med. Phys. 27, 23–29 (2000)CrossRefGoogle Scholar
  12. 12.
    Näppi, J., Yoshida, H.: Fully automated three-dimensional detection of polyps in fecal-tagging CT colonography. Acad. Radiol. 25, 287–300 (2007)CrossRefGoogle Scholar
  13. 13.
    Do, S., Liang, Z., Karl, W., Brady, T., Pien, H.: A projection-driven pre-correction technique for iterative reconstruction of helical cone-beam cardiac CT images. In: Proc. SPIE Medical Imaging: Physics of Medical Imaging, vol. 6913. SPIE Press (2008)Google Scholar
  14. 14.
    Brooks, R.: A quantitative theory of the Hounsfield unit and its application to dual energy scanning. J. Comput. Assist. Tomogr. 1, 487–493 (1977)CrossRefGoogle Scholar
  15. 15.
    Jacobs, F., Sundermann, E., De Sutter, B., Christiaens, M., Lemahieu, I.: A fast algorithm to calculate the extract radiological path through a pixel or voxel space. J. Comput. Inf. T. 6, 89–94 (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Synho Do
    • 1
  • Janne J. Näppi
    • 1
  • Hiroyuki Yoshida
    • 1
  1. 1.Massachusetts General Hospital Imaging and Harvard Medical SchoolBostonUSA

Personalised recommendations