Skip to main content

Satellite Remote Sensing in Offshore Wind Energy

  • Chapter
  • First Online:
Handbook of Wind Power Systems

Part of the book series: Energy Systems ((ENERGY))

Abstract

Satellite remote sensing of ocean surface winds are presented with focus on wind energy applications. The history on operational and research-based satellite ocean wind mapping is briefly described for passive microwave, scatterometer and synthetic aperture radar (SAR). Currently 6 GW installed capacity is found in the European Seas. The European Wind Energy Association, EWEA, expects the cumulative offshore capacity in Europe will reach 150 GW in year 2030. The offshore environment is far less well-known than over land and this increases the challenge of planning, operation and maintenance offshore. Satellite-based ocean surface wind data can fill a gap in our understanding of marine winds, their temporal and spatial variations. The statistics from satellite-based ocean surface wind maps include wind resources, long-term trend analysis and daily variations in winds. Some examples using data from passive microwave radiometer, scatterometer and SAR are presented from the North Sea and Baltic Sea. These seas are home to the majority of offshore wind farms today and many new offshore wind farm projects are in progress here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ALOS:

Advanced Land Observing Satellite

AMSR:

Advanced Microwave Scanning Radiometer

ASAR:

Advanced Synthetic Aperture Radar

ASCAT:

Advanced scatterometer

ASI:

Italian Space Agency

CFOSat:

Chinese French Ocean Satellite

CLS:

Collecte Localisation Satellites

CNES:

Centre National d’Etudes des Spatiales

CNSA:

China National Space Administration

COSMO-SkyMed:

COnstellation of small Satellites for the Mediterranean basin Observation

CSA:

Canadian Space Agency

DLR:

German Aerospace Centre

DMSP:

Defense Meteorological Satellite Program

DTOC:

Design Tools for Offshore wind farm Clusters

EERA:

European Energy Research Alliance

EOLI-SA:

Earth Observation Link-Stand Alone

ERS:

European Remote Sensing satellite

ESA:

European Space Agency

EUMETSAT:

European Organisation for the Exploitation of Meteorological Satellites

EWEA:

European Wind Energy Association

FINO:

Forschungsplattformen in Nord- und Ostsee

GCOM-W2:

Global Change Observation Mission, W: Water cycle

GMF:

Geophysical Model Function

HH:

Horizontal receive, horizontal transmit

HJ:

Huan Jing (Environmental Protection and Disaster Monitoring Constellation)

HY:

Chinese Ocean Color Satellite

ISRO:

Indian Space Research Organisation

JAXA:

Japan Aerospace Exploration Agency

JERS:

Japanese Earth Remote Sensing Satellite

JHU APL:

Johns Hopkins University, Applied Physics Laboratory

JPL:

Jet Propulsion Laboratory

LTAN:

Local Time Ascending Node

MDA:

MacDonald Dettwiler and Associates

NAO:

North Atlantic Oscillation

NASA:

National Aeronautics and Space Administration

NASDA:

National Space Agency of Japan

NESDIS:

National Environmental Satellite, Data and Information Service

NOGAPS:

Navy Operational Global Atmospheric Prediction System

NOAA:

National Oceanic and Atmospheric Administration

NORSEWInD:

Northern Seas Wind Index Database

NSCAT:

NASA scatterometer

NSIDC:

National Snow and Ice Data Center

NSOAS:

National Satellite Ocean Application Service (in China)

PALSAR:

Phased Array L-band Synthetic Aperture Radar

PO.DAAC:

Physical Oceanography Distributed Active Archive

RSS:

Remote Sensing Systems

SAR:

Synthetic Aperture Radar

ScatSat:

Scatterometer Satellite

SMMR:

Scanning Multichannel Microwave Radiometer

SSM/I:

Special Sensor Microwave Imager

SSMIS:

Special Sensor Microwave Imager Sounder

TanDEM:

TerraSAR-X add-on for Digital Elevation Measurement

TerraSAR:

Terra Synthetic Aperture Radar

TMI:

TRMM Microwave Imager

TRMM:

Tropical Rainfall Measuring Mission

TSX-NG:

TerraSAR-X Next Generation

VV:

Vertical receive, vertical transmit

WRF:

Weather Research and Forecasting

References

  1. Wentz FJ (1997) A well-calibrated ocean algorithm for SSM/I. J Geophys Res 102(C4):8703–8718

    Article  Google Scholar 

  2. Wentz FJ, Spencer RW (1998) SSM/I rain retrievals within a unified all-weather ocean algorithm. J Atmos Sci 55:1613–1627

    Google Scholar 

  3. NSIDC. http://nsidc.org/data/docs/daac/ssmi_instrument.gd.html

  4. Hasager C, Mouche A, Badger M, Astrup P, Nielsen M (2009) Satellite wind in EU-Norsewind scientific proceedings of European wind energy conference and exhibition, pp 144–147, Marseille (FR) 16–19 Mar 2009

    Google Scholar 

  5. FINO (2002). http://www.bsh.de/en/Marine_data/Observations/Projects/FINO/index.jsp

  6. Charnock H (1955) Wind stress over a water surface. Q J R Meteorol Soc 81:639–640

    Article  Google Scholar 

  7. Troen I, Petersen EL (1989) European wind atlas, Risø National Laboratory ISBN 87-550-1482-8

    Google Scholar 

  8. NASA Quick Scatterometer (2006) QuikSCAT science data product, user’s manual, overview and geophysical data products. Version 3.0, Jet Propulsion Laboratory, California Institute of Technology, D-18053-Rev A, Sep 2006

    Google Scholar 

  9. Liu WT, Tang W (1996) Equivalent neutral wind. National Aeronautics and Space Administration, Jet Propulsion Laboratory (US, and United States), National Aeronautics and Space Administration, Jet Propulsion Laboratory, California Institute of Technology; National Aeronautics and Space Administration; National Technical Information Service, distributor

    Google Scholar 

  10. Ebuchi N, Graber HC, Caruso MJ (2002) Evaluation of wind vectors observed by QuikSCAT/SeaWinds using ocean buoy data. J Atmos Oceanic Technol 19:2049–2062

    Article  Google Scholar 

  11. Bourassa MA, Legler DM, O’Brien JJ, Smith SR (2003) SeaWinds validation with research vessels. J Geophys Res 108(C2):3019. doi:10.1029/2001JC001028

    Google Scholar 

  12. Tang W, Liu WT, Stiles BW (2004) Evaluation of high-resolution ocean surface vector winds measured by QuikSCAT scatterometer in coastal regions. IEEE Transactions on Geoscience and Remote Sensing, f42, pp 1762–1769

    Google Scholar 

  13. Boutin J, Quilfen Y, Merlivat L, Piolle JF (2009) Global average of air-sea CO2 transfer velocity from QuikSCAT scatterometer wind speeds. J Geophys Res-Oceans 114:C04007

    Article  Google Scholar 

  14. Pickett MH, Tang W, Rosenfeld LK, Wash CH (2003) QuikSCAT satellite comparisons with near-shore buoy wind data off the U.S. West Coast. J Atmos Oceanic Technol 20:1869–1879

    Article  Google Scholar 

  15. Gille ST, Llewellyn Smith SG, Statom NM (2005) Global observations of the land breeze. Geophys Res Lett 32:1–4

    Article  Google Scholar 

  16. Liu WT (2002) Progress in scatterometer application. J Oceanography 58(1)

    Google Scholar 

  17. Chelton DB, Freilich MH, Sienkiewicz JM, Von Ahn JM (2006) On the use of QuikSCAT scatterometer measurements of surface winds for marine weather prediction. Mon Wea Rev 134:2055–2071

    Article  Google Scholar 

  18. Chelton DB, Freilich MH (2005) Scatterometer-based assessment of 10-m wind analyses from the operational ECMWF and NCEP numerical weather prediction models. Mon Wea Rev 133:409–429

    Article  Google Scholar 

  19. Hoffman RN, Leidner SM (2005) An introduction to the near-real-time QuikSCAT data. Weather Forecast 20:476–493

    Article  Google Scholar 

  20. Karagali I, Badger M, Hahmann A, Peña A, Hasager C, Sempreviva AM (2013) Spatical and temporal variability in winds in the Northern European Seas. Renew Energy 57: 200–210

    Google Scholar 

  21. Valenzuela GR (1978) Theories for the interaction of electromagnetic and ocean waves—A review. Bound-Layer Meteorol 13:61–85

    Article  Google Scholar 

  22. Isoguchi O, Shimada M (2009) An L-band ocean geophysical model function derived from PALSAR. IEEE Trans Geosci Remote Sens 47:1925–1936. doi:10.1109/TGRS.2008.2010864

    Article  Google Scholar 

  23. Thompson DR, Monaldo FM, Horstmann J, Christiansen MB (2008) Geophysical model functions for the retrieval of ocean surface winds. 2nd International Workshop on Advance in SAR Oceanography from ENVISAT and ERS Missions, The European Space Agency, Rome, Italy 21–25 Jan 2008

    Google Scholar 

  24. Stoffelen A, Anderson DLT (1993) Wind retrieval and ERS-1 scatterometer radar backscatter measurements. Adv Space Res 13:53–60

    Article  Google Scholar 

  25. Gerling TW (1986) Structure of the surface wind field from the SEASAT SAR. J Geophys Res 91:2308–2320

    Article  Google Scholar 

  26. Fichaux N, Ranchin T (2002) Combined extraction of high spatial resolution wind speed and direction from SAR images: a new approach using wavelet transform. Can J Remote Sens 28:510–516

    Article  Google Scholar 

  27. Du Y, Vachon PW, Wolfe J (2002) Wind direction estimation from SAR images of the ocean using wavelet analysis. Can J Remote Sens 28:498–509

    Article  Google Scholar 

  28. Koch W (2004) Directional analysis of SAR images aiming at wind direction. IEEE Trans Geosci Remote Sens 42:702–710

    Article  Google Scholar 

  29. Horstmann J, Koch W, Lehner S (2004) Ocean wind fields retrieved from the advanced synthetic aperture radar aboard ENVISAT. Ocean Dyn 54:570–576

    Article  Google Scholar 

  30. Quilfen Y, Chapron B, Elfouhaily T, Katsaros K, Tournadre J (1998) Observation of tropical cyclones by high-resolution scatterometry. J Geophys Res 103:7767–7786

    Article  Google Scholar 

  31. Stoffelen A, Anderson DLT (1997) Scatterometer data interpretation: estimation and validation of the transfer function CMOD4. J Geophys Res 102:5767–5780

    Article  Google Scholar 

  32. Hersbach H, Stoffelen A, de Haan S (2007) An improved C-band scatterometer ocean geophysical model function: CMOD5. J Geophys Res-Oceans, 112

    Google Scholar 

  33. Elfouhaily TM (1996) Modéle couple vent/vagues et son application à la télédétection par micro-onde de la surface de la mer. University of Paris 7

    Google Scholar 

  34. Thompson D, Elfouhaily T, Chapron B (1998) Polarization ratio for microwave backscattering from the ocean surface at low to moderate incidence angles, pp 1671–1676

    Google Scholar 

  35. Vachon PW, Dobson EW (2000) Wind retrieval from RADARSAT SAR images: selection of a suitable C-band HH polarization wind retrieval model. Can J Remote Sens 26:306–313

    Google Scholar 

  36. Mouche AA, Hauser D, Daloze JF, Guerin C (2005) Dual-polarization measurements at C-band over the ocean: Results from airborne radar observations and comparison with ENVISAT ASAR data. IEEE Trans Geosci Remote Sens 43:753–769

    Article  Google Scholar 

  37. Hasager CB, Dellwik E, Nielsen M, Furevik B (2004) Validation of ERS-2 SAR offshore wind-speed maps in the North Sea. Int J Remote Sens 25:3817–3841

    Article  Google Scholar 

  38. Christiansen MB, Koch W, Horstmann J, Hasager CB, Nielsen M (2006) Wind resource assessment from C-band SAR. Remote Sens Environ 105:68–81

    Article  Google Scholar 

  39. Hasager CB, Badger M, Peña A, Larsén XG (2010) SAR-based wind resource statistics in the Baltic Sea. Remote Sens 3(1): 117–144. doi:10.3390/rs3010117

    Google Scholar 

  40. Monaldo FM, Thompson DR, Beal RC, Pichel WG, Clemente-Colón P (2001) Comparison of SAR-derived wind speed with model predictions and ocean buoy measurements. IEEE Trans Geosci Remote Sens 39:2587–2600

    Article  Google Scholar 

  41. Fetterer F, Gineris D, Wackerman CC (1998) Validating a scatterometer wind algorithm for ERS-1 SAR. IEEE Trans Geosci Remote Sens 36:479–492

    Article  Google Scholar 

  42. Monaldo FM, Thompson DR, Pichel WG, Clemente-Colon P (2004) A systematic comparison of QuikSCAT and SAR ocean surface wind speeds. IEEE Trans Geosci Remote Sens 42:283–291

    Article  Google Scholar 

  43. Horstmann J, Schiller H, Schulz-Stellenfleth J, Lehner S (2003) Global wind speed retrieval from SAR. IEEE Trans Geosci Remote Sens 41:2277–2286

    Article  Google Scholar 

  44. Furevik B, Johannessen O, Sandvik AD (2002) SAR-retrieved wind in polar regions—comparison with in situ data and atmospheric model output. IEEE Trans Geosci Remote Sens 40:1720–1732

    Article  Google Scholar 

  45. Young G, Winstead N (2005) Meteorological phenomena in high resolution SAR wind imagery. High resolution wind monitoring with wide swath SAR: A user’s guide. In: Beal B, Young G, Monaldo F, Thompson D, Winstead N, Scott C (eds) U.S. Department of Commerce, National Oceanic and Atmospheric Administration, pp 13–34

    Google Scholar 

  46. Alpers W, Ivanov A, Horstmann J (2009) Observations of Bora events over the Adriatic Sea and Black Sea by Spaceborne Synthetic Aperture Radar. Mon Weather Rev 137:1150–1161. doi:10.1175/2008MWR2563.1

    Article  Google Scholar 

  47. Barthelmie RJ, Badger J, Pryor SC, Hasager CB, Christiansen MB, Jorgensen BH (2007) Offshore coastal wind speed gradients: issues for the design and development of large offshore windfarms. Wind Eng 31:369–382

    Article  Google Scholar 

  48. Larsén XG, Larsen S, Badger M (2010) A case study of mesoscale spectra of wind and temperature, observed and simulated. Q J R Meteorol Soc 137(654): 264−274

    Google Scholar 

  49. Christiansen MB, Hasager CB (2005) Wake effects of large offshore wind farms identified from satellite SAR. Remote Sens Environ 98:251–268

    Article  Google Scholar 

  50. Christiansen MB, Hasager CB (2006) Using airborne and satellite SAR for wake mapping offshore. Wind Energy 9:437–455

    Article  Google Scholar 

  51. Barthelmie RJ, Pryor SC (2003) Can satellite sampling of offshore wind speeds realistically represent wind speed distributions. J Appl Meteorol 42:83–94

    Article  Google Scholar 

  52. Badger M, Badger J, Nielsen M, Hasager CB, Peña A (2010) Wind class sampling of satellite SAR imagery for offshore wind resource mapping. J Appl Meteorol Climatology. doi:10.1175/2010JAMC2523.1

    MATH  Google Scholar 

  53. Hasager C, Peña A, Christiansen M, Astrup P, Nielsen M, Monaldo F, Thompson D, Nielsen P (2008) Remote sensing observation used in offshore wind energy. IEEE J Sel Topics Appl Earth Observations Remote Sens 1(1):67–79

    Article  Google Scholar 

  54. Beal B, Young G, Monaldo F, Thompson D, Winstead N, Scott C (eds) (2005) High resolution wind monitoring with wide swath SAR: A user’s guide. U.S. Department of Commerce, National Oceanic and Atmospheric Administration

    Google Scholar 

  55. Peña A, Hasager C, Gryning S-E (2008) Measurements and modelling the wind speed profile in the marine atmospheric boundary layer. Bound-Layer Meteorol 129:479–495

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge the satellite remote sensing data available for analysis. This includes QuikSCAT and SSM/I. QuikSCAT data are produced by Remote Sensing Systems and sponsored by the NASA Ocean Vector Winds Science Team. Data are available at www.remss.com. SSM/I are produced by Remote Sensing Systems and sponsored by the NASA Earth Science MEaSUREs DISCOVER Project. Data are available at www.remss.com. We acknowledge satellite data provided by the European Space Agency, the EO-3644 ERS and Envisat and EO-6773 ERS, Envisat, ALOS PALSAR and RADARSAT grants. The Johns Hopkins University, Applied Physics Laboratory is thanked for use and support of the APL/NOAA SAR Wind Retrieval System. We acknowledge the meteorological data from FINO-1 the Forschungsprojekt FINO [Forschungsplattformen in Nord- und Ostsee (North and Baltic Sea)]. We acknowledge support from the EU-NORSEWInD project www.norsewind.eu TREN-FP7EN-219048, in years 2008–2012 and EERA-DTOC www.eera-dtoc.eu FP7-ENERGY-2011-1/n°282797 in years 2012–2015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charlotte Bay Hasager .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hasager, C.B., Badger, M., Astrup, P., Karagali, I. (2013). Satellite Remote Sensing in Offshore Wind Energy. In: Pardalos, P., Rebennack, S., Pereira, M., Iliadis, N., Pappu, V. (eds) Handbook of Wind Power Systems. Energy Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41080-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41080-2_21

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41079-6

  • Online ISBN: 978-3-642-41080-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics