Skip to main content

Wind Energy Facility Reliability and Maintenance

  • Chapter
  • First Online:
Handbook of Wind Power Systems

Part of the book series: Energy Systems ((ENERGY))

Abstract

The global wind power industry involves operations in highly stochastic environments and thus faces challenges in enhancing reliability and reducing maintenance costs. Earlier studies related to wind energy facility reliability and maintenance focused more on qualitative aspects, discussing the unique influencing factors in wind power operations and their effects on system performance. With operational experience accumulated for more than a decade, the most recent focus has shifted to a more structured approach using analytical and/or simulation methods. In this chapter, we provide a comprehensive account of the existing research regarding wind energy facility reliability and maintenance. We group the relevant studies into three major categories. The first category addresses the degradation and failure pattern of wind turbines, aiming at optimizing the operations and maintenance. The second and third categories discuss the reliability issues in a broader sense, focusing on reliability assessment at the wind farm level and at the overall power system level, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. NERC (2009) The 2009 long-term reliability assessment. Technical report, North American Electric Reliability Corporation (NERC), Washington, DC (Online). Available: http://www.nerc.com/files/2009_LTRA.pdf

  2. Walford C (2006) Wind turbine reliability: understanding and minimizing wind turbine operation and maintenance costs. Technical report, Sandia National Laboratories, Albuquerque (Online). Available: http://prod.sandia.gov/techlib/access-control.cgi/2006/061100.pdf

  3. Vachon W (2002) Long-term O&M costs of wind turbines based on failure rates and repair costs. Paper presented at the WINDPOWER 2002 annual conference

    Google Scholar 

  4. Wiser R, Bolinger M (2008) Annual report on U.S. wind power installation, cost, performance trend: 2007. Technical report, U.S Department of Energy, Washington, DC

    Google Scholar 

  5. Faulstich S, Hahn B, Jung H, Rafik K, Ringhand A (2008) Appropriate failure statistics and reliability characteristics. Technical report, Fraunhofer Institute for Wind Energy, Bremerhaven

    Google Scholar 

  6. Bussel GV (1999) The development of an expert system for the determination of availability and O&M costs for offshore wind farms. In: Proceedings of the 1999 European wind energy conference and exhibition, Nice, pp 402–405

    Google Scholar 

  7. Nilsson J, Bertling L (2007) Maintenance management of wind power systems using condition monitoring systems-life cycle cost analysis for two case studies. IEEE Trans Energy Convers 22:223–229

    Article  Google Scholar 

  8. Yang F, Kwan C, Chang C (2008) Multiobjective evolutionary optimization of substation maintenance using decision-varying Markov model. IEEE Trans Power Syst 23:1328–1335

    Article  Google Scholar 

  9. Qian S, Jiao W, Hu H, Yan G (2007) Transformer power fault diagnosis system design based on the HMM method. In: Proceedings of the IEEE international conference on automation and logistics, Jinan, pp 1077–1082

    Google Scholar 

  10. Jirutitijaroen P, Singh C (2004) The effect of transformer maintenance parameters on reliability and cost: a probabilistic model. Electr Power Syst Res 72:213–234

    Article  Google Scholar 

  11. Hendriks H, Bulder B, Heijdra J, Pierik1 J, van Bussel G, van Rooij R, Zaaijer M, Bierbooms W, den Hoed D, de Vilder G, Goezinne F, Lindo M, van den Berg R, de Boer J (2000) DOWEC concept study; evaluation of wind turbine concepts for large scale offshore application. In: Proceedings of the offshore wind energy in Mediterranean and other European seas (OWEMES) conference, Siracusa, pp 211–219

    Google Scholar 

  12. Pacot C, Hasting D, Baker N (2003) Wind farm operation and maintenance management. In: Proceedings of the powergen conference Asia, Ho Chi Minh City, pp 25–27

    Google Scholar 

  13. Krokoszinski HJ (2003) Efficiency and effectiveness of wind farms-keys to cost optimized operation and maintenance. Renew Energy 28:2165–2178

    Article  Google Scholar 

  14. Ribrant J (2006) Reliability performance and maintenance—a survey of failures in wind power systems. Master’s thesis, KTH School of Electrical Engineering, Stockholm

    Google Scholar 

  15. Tavner PJ, Edwards C, Brinkman A, Spinato F (2006) Influence of wind speed on wind turbine reliability. Wind Eng 30:55–72

    Article  Google Scholar 

  16. Andrawus JA, Watson J, Kishk M (2007) Modelling system failures to optimise wind farms. Wind Eng 31:503–522

    Article  Google Scholar 

  17. Tavner PJ, Xiang J, Spinato F (2007) Reliability analysis for wind turbines. Wind Energy 10:1–8

    Article  Google Scholar 

  18. Guo H, Watson S, Tavner P, Xiang J (2009) Reliability analysis for wind turbines with incomplete failure data collected from after the date of initial installation. Reliab Eng Syst Saf 94:1057–1063

    Article  Google Scholar 

  19. Coolen FPA (2010) On modelling of grouped reliability data for wind turbines. IMA J Manage Math 21:363–372

    Article  MATH  MathSciNet  Google Scholar 

  20. Vittal S, Teboul M (2005) Performance and reliability analysis of wind turbines using Monte Carlo methods based on system transport theory. In: Proceedings of the 46th AIAA structures, structural dynamics and materials conference, Austin

    Google Scholar 

  21. Sayas FC, Allan RN (1996) Generation availability assessment of wind farms. In: Proceedings of IEEE—generation, transmission and distribution, vol 144, pp 1253–1261

    Google Scholar 

  22. McMillan D, Ault GW (2008) Condition monitoring benefit for onshore wind turbines: sensitivity to operational parameters. IET Renew Power Gener 2:60–72

    Article  Google Scholar 

  23. Byon E, Ntaimo L, Ding Y (2010) Optimal maintenance strategies for wind power systems under stochastic weather conditions. IEEE Trans Reliab 59:393–404

    Article  Google Scholar 

  24. Byon E, Ding Y (2010) Season-dependent condition-based maintenance for a wind turbine using a partially observed markov decision process. IEEE Trans Power Syst 25:1823–1834

    Article  Google Scholar 

  25. Ronold KO, Wedel-Heinen J, Christensen CJ (1999) Reliability-based fatigue design of wind-turbine rotor blades. Eng Struct 21:1101–1114

    Article  Google Scholar 

  26. Manuel L, Veers PS, Winterstein SR (2001) Parametric models for estimating wind turbine fatigue loads for design. J Sol Energy 123:346–355

    Google Scholar 

  27. Nelson LD, Manuel L, Sutherland HJ, Veers PS (2003) Statistical analysis of wind turbine inflow and structural response data from the LIST program. J Sol Energy 125:541–550

    Google Scholar 

  28. Veers PS (1988) Three-dimensional wind simulation. Technical report, Sandia National Laboratories, Albuquerque (Online). Available: http://prod.sandia.gov/techlib/access-control.cgi/1988/880152.pdf

  29. Burton T, Sharpe D, Jenkins N, Bossanyis E (2001) Wind energy handbook. Wiley, England

    Google Scholar 

  30. Ragan P, Manuel L (2007) Comparing estimates of wind turbine fatigue loads using time-domain and spectral methods. Wind Eng 31:83–99

    Article  Google Scholar 

  31. Moan T (2005) Reliability-based management of inspection, maintenance and repair of offshore structures. Struct Infrastruct Eng 1:33–62

    Article  Google Scholar 

  32. Rangel-Ramírez JG, Sørensen JD (2008) Optimal risk-based inspection planning for offshore wind turbines. Int J Steel Struct 8:295–303

    Google Scholar 

  33. Sørensen JD, Frandsenb S, Tarp-Johansen N (2008) Effective turbulence models and fatigue reliability in wind farms. Probab Eng Mech 23:531–538

    Article  Google Scholar 

  34. Sørensen JD (2009) Framework for risk-based planning of operation and maintenance for offshore wind turbines. Wind Energy 12:493–506

    Article  Google Scholar 

  35. Bharadwaj UR, Speck JB, Ablitt CJ (2007) A practical approach to risk based assessment and maintenance optimisation of offshore wind farms. In: Proceedings of the 26th international conference on offshore mechanics and arctic engineering (OMAE), San Diego, pp 10–15

    Google Scholar 

  36. Aven T, Jensen U (1999) Stochastic models in reliability. Springer, New York

    Book  MATH  Google Scholar 

  37. Kim H, Singh C (2010) Reliability modeling and analysis in power systems with aging characteristics. IEEE Trans Power Syst 25:21–28

    Article  Google Scholar 

  38. Schilling MT, Praca JCG, de Queiroz JF, Singh C, Ascher H (1988) Detection of aging in the reliability analysis of thermal generators. IEEE Trans Power Syst 3:490–499

    Article  Google Scholar 

  39. Camporeale SM, Fortunato B, Marilli G (2001) Automatic system for wind turbine testing. J Sol Energy Eng 123:333–338

    Article  Google Scholar 

  40. Griffin DA, Ashwill TD (2003) Alternative composite materials for megawatt-scale wind turbine blades: design considerations and recommended testing. J Sol Energy Eng 125:515–521

    Article  Google Scholar 

  41. Dutton AG (2004) Thermoelastic stress measurement and acoustic emission monitoring in wind turbine blade testing. In: Proceedings of the 2004 European wind energy conference and exhibition, London

    Google Scholar 

  42. Rademakers L, Braam H, Zaaijer M, van Bussel G (2003) Assessment and optimisation of operation and maintenance of offshore wind turbines. Technical report, ECN Wind Energy, Petten (Online). Available: http://www.ecn.nl/docs/library/report/2003/rx03044.pdf

  43. Rademakers L, Braam H, Verbruggen T (2003) R&D needs for O&M of wind turbines. Technical report, ECN Wind Energy, Petten

    Google Scholar 

  44. Negra NB, Holmstrøm O, Bak-Jensen B, Sørensen P (2007) Aspects of relevance in offshore wind farm reliability assessment. IEEE Trans Energy Convers 22:159–166

    Article  Google Scholar 

  45. Byon E, Pérez E, Ding Y, Ntaimo L (2011) Simulation of wind farm operations and maintenance using DEVS. Simulation - Transactions of the Society for Modeling and Simulation International, 87:1093–1117

    Google Scholar 

  46. Foley JT, Gutowski TG (2008) Turbsim: reliability-based wind turbine simulator. In: Proceedings of the 2008 IEEE international symposium on electronics and the environment, San Francisco, pp 1–5

    Google Scholar 

  47. Wen J, Zheng Y, Feng D (2009) A review on reliability assessment for wind power. Renew Sustain Energy Rev 13:2485–2494

    Article  Google Scholar 

  48. Chowdhury AA (2005) Reliability model for large wind farms in generation system planning. In: Proceedings of IEEE power engineering society general meeting, pp 1–7

    Google Scholar 

  49. Billinton R, Gao Y (2008) Multi-state wind energy conversion system models for adequacy assessment of generating systems incorporating wind energy. IEEE Trans Energy Convers 23:163–170

    Article  Google Scholar 

  50. Singh C, Lago-Gonzalez A (1985) Reliability modeling of generation system including unconventional energy sources. IEEE Trans Power Syst PAS-104:1049–1056

    Google Scholar 

  51. Billinton R, Li Y (2007) Incorporating multi-state unit models in composite system adequacy assessment. Eur Trans Electr Power 17:375–386

    Article  Google Scholar 

  52. Billinton R, Gao Y (2008) Adequacy assessment of composite power generation and transmission systems with wind energy. Int J Reliab Saf 1(2):79–98

    Article  Google Scholar 

  53. Singh C, Kim Y (1988) An efficient technique for reliability analysis of power system including time dependent sources. IEEE Trans Power Syst 3:1090–1096

    Article  Google Scholar 

  54. Fockens S, van Wijk AJM, Turkenburg WC, Singh C (1992) Reliability analysis of generating systems including intermittent sources. Int J Electr Power Energy Syst 14:2–8

    Article  Google Scholar 

  55. Dobakhshari A, Fotuhi-Firuzabad M (2009) A reliability model of large wind farms for power system adequacy studies. IEEE Trans Energy Convers 24:792–801

    Article  Google Scholar 

  56. Leite A, Borges C, Falcao D (2006) Probabilistic wind farms generation model for reliability studies applied to Brazilian sites. IEEE Trans Power Syst 21:1493–1501

    Article  Google Scholar 

  57. Wang L, Singh C (2007) Adequacy assessment of power-generating systems including wind power integration based on ant colony system algorithm. In: Proceedings of IEEE power tech conference, Lausanne, pp 1629–1634

    Google Scholar 

  58. Wang L, Singh C (2008) Population-based intelligent search in reliability evaluation of generation systems with wind power penetration. IEEE Trans Power Syst 23:1336–1345

    Article  Google Scholar 

  59. Billinton R, Bai G (2004) Generating capacity adequacy associated with wind energy. IEEE Trans Energy Convers 19:641–646

    Article  Google Scholar 

  60. Wangdee W, Billinton R (2006) Considering load-carrying capability and wind speed correlation of WECS in generation adequacy assessment. IEEE Trans Energy Convers 21:734–741

    Article  Google Scholar 

  61. Ravindra M, Prakash S (2008) Generator system reliability analysis including wind generators using hourly mean wind speed. Electr Power Compon Syst 36:1–16

    Google Scholar 

  62. Karki R, Billinton R (2004) Cost-effective wind energy utilization for reliable power supply. IEEE Trans Energy Convers 19:435–440

    Article  Google Scholar 

  63. Vallée F, Lobry J, Deblecker O (2008) System reliability assessment method for wind power integration. IEEE Trans Power Syst 23:2329–2367

    Article  Google Scholar 

  64. Vallée F, Lobry J, Deblecker O (2010) Wind generation modeling for transmission system adequacy studies with economic dispatch. In: Proceedings of the 2010 European wind energy conference and exhibition, Brussels

    Google Scholar 

  65. Billinton R, Wangdee W (2007) Reliability-based transmission reinforcement planning associated with large-scale wind farms. IEEE Trans Power Syst 22:34–41

    Article  Google Scholar 

  66. Karki R, Patel J (2009) Reliability assessment of a wind power delivery system. Proc Inst Mech Eng Part O: J Risk Reliab 223:51–58

    Google Scholar 

  67. Alsyouf I, El-Thalji I (2008) Maintenance practices in wind power systems: a review and analysis. In: Proceedings of the 2008 European wind energy conference and exhibition, Brussels

    Google Scholar 

  68. Lemming J, Morthorst PE, Hansen LH, Andersen PD, Jensen PH (1999) O&M costs and economical life-time of wind turbines. In: Proceedings of the 1999 European wind energy conference, Nice, pp. 387–390

    Google Scholar 

  69. U.S Department of Energy (2004) Wind power today and tomorrow. Technical report, U.S Department of Energy, Washington, DC (Online). Available: http://www.nrel.gov/docs/fy04osti/34915.pdf

  70. American Wind Energy Association (2008) http://awea.org/

  71. Wiser R, Bolinger M (2008) Annual report on U.S. wind power installation, cost, performance trend: 2007. Technical report, North American Electric Reliability Corporation (NERC), Washington, DC (Online). Available: http://www.nrel.gov/docs/fy08osti/43025.pdf

  72. Asmus P (2010) The wind energy operations and maintenance. Technical report, Wind Energy Update, London (Online). Available: http://social.windenergyupdate.com/

  73. Wind Energy—the facts (WindFacts) http://www.wind-energy-the-facts.org/

  74. Smolders K, Long H, Feng Y, Tavner P (2010) Reliability analysis and prediction of wind turbine gearboxes. In: Proceedings of the 2010 European wind energy conference and exhibition, Warsaw

    Google Scholar 

  75. Echavarria E, Hahn B, van Bussel GJW, Tomiyama T (2008) Reliability of wind turbine technology through time. J Sol Energy Eng 130:031005 (8 pages)

    Google Scholar 

  76. Amirat Y, Benbouzid MEH, Bensaker B, Wamkeue R (2007) Condition monitoring and fault diagnosis in wind energy conversion systems: a review. In: IEEE international electric machines and drives conference, Antalya

    Google Scholar 

  77. The Weather Research and Forecasting (WRF) Model http://www.wrf-model.org/

  78. Arabian-Hoseynabadi H, Oraeea H, Tavner P (2010) Failure modes and effects analysis (FMEA) for wind turbines. Int J Electr Power Energy Syst 32:817–824

    Google Scholar 

  79. Ribrant J, Bertling L (2007) Survey of failures in wind power systems with focus on Swedish wind power plants during 1997–2005. IEEE Trans Energy Convers 22:167–173

    Article  Google Scholar 

  80. Zhang X, Zhang J, Gockenbach E (2009) Reliability centered asset management for medium-voltage deteriorating electrical equipment based on Germany failure statistics. IEEE Trans Power Syst 24:721–728

    Article  Google Scholar 

  81. Hameed Z, Hong Y, Cho Y, Ahn S, Song C (2009) Condition monitoring and fault detection of wind turbines and related algorithms: a review. Renew Sustain Energy Rev 13:1–39

    Article  Google Scholar 

  82. Khan M, Iqbal M, Khan F (2005) Reliability and condition monitoring of a wind turbine. In: Proceedings of the 2005 IEEE Canadian conference on electrical and computer engineering, Saskatoon, pp 1978–1981

    Google Scholar 

  83. Caselitz P, Giebhardt J (2005) Rotor condition monitoring for improved operational safety of offshore wind energy converters. J Sol Energy Eng 127:253–261

    Article  Google Scholar 

  84. Poore R, Lettenmaier T (2006) Alternative design study report: windpact advanced wind turbine drive train design study. Technical report, National Renewable Energy Laboratories (NREL), Golden, Colorado (Online). Available: http://www.nrel.gov/wind/pdfs/33196.pdf

  85. Ding Y, Byon E, Park C, Tang J, Lu Y, Wang X (2007) Dynamic data-driven fault diagnosis of wind turbine systems. Lect Notes Comput Sci 4487:1197–1204

    Google Scholar 

  86. Hall P, Strutt J (2007) Probabilistic physics-of-failure models for component reliabilities using Monte Carlo simulation and weibull analysis: a parametric study. Reliab Eng Syst Saf 80:233–242

    Article  Google Scholar 

  87. Basumatary H, Sreevalsan E, Sasi KK (2005) Weibull parameter estimation—a comparison of different methods. Wind Eng 29:309–316

    Article  Google Scholar 

  88. Windstats (2008) http://www.windstats.com/

  89. Baker RD (1996) Some new tests of the power law process. Technometrics 38:256–265

    Article  MATH  MathSciNet  Google Scholar 

  90. Leemis LM (1991) Nonparametric estimation of the cumulative intensity function for a nonhomogeneous poisson process. Manage Sci 37:886–900

    Article  MATH  Google Scholar 

  91. Leemis LM (1982) Sequential probability ratio tests for the shape parameter of a nonhomogeneous poisson process. IEEE Trans Reliab 31:79–83

    Google Scholar 

  92. Leemis LM (1987) Efficient sequential estimation in a nonhomogeneous poisson process. IEEE Trans Reliab 36:255–258

    Google Scholar 

  93. Rigdon SE, Basu AP (1989) The power law process: a model for the reliability of repairable systems. J Qual Technol 21:251–260

    Google Scholar 

  94. Landwirtschaftskammer Schleswig-Holstein Wind Energie, Praxisergebnisse 1993–2004. Rendsbug, Germany, 2008, Eggersglüss ed. (Note: this source appeared initially in [19] and recited here)

    Google Scholar 

  95. Welte T (2009) Using state diagrams for modeling maintenance of deteriorating systems. IEEE Trans Power Syst 24:58–66

    Article  Google Scholar 

  96. Hoskins RP, Strbac G, Brint AT (1999) Modelling the degradation of condition indices. In: IEEE Proceedings of generation, transmission and distribution, vol 146, pp 386–392

    Google Scholar 

  97. Norris J (1998) Markov chains. Cambridge University Press, Cambridge

    Google Scholar 

  98. Puterman M (1994) Markov decision process. Wiley, New York

    Google Scholar 

  99. Lovejoy W (1987) Some monotonicity results for partially observed Markov decision processes. Oper Res 35:736–742

    Article  MATH  MathSciNet  Google Scholar 

  100. Rosenfield D (1976) Markovian deterioration with uncertain information. Oper Res 24:141–155

    Article  MATH  MathSciNet  Google Scholar 

  101. Ross S (1971) Quality control under Markovian deterioration. Manage Sci 19:587–596

    Article  Google Scholar 

  102. Ohnishi M, Kawai H, Mine H (1986) An optimal inspection and replacement policy under incomplete state information. Eur J Oper Res 27:117–128

    Article  MATH  MathSciNet  Google Scholar 

  103. Maillart LM (2006) Maintenance policies for systems with condition monitoring and obvious failures. IIE Trans 38:463–475

    Article  Google Scholar 

  104. Maillart LM, Zheltova L (2007) Structured maintenance policies in interior sample paths. Naval Res Logistics 54:645–655

    Article  MATH  MathSciNet  Google Scholar 

  105. Ghasemi A, Yacout S, Ouali MS (2007) Optimal condition based maintenance with imperfect information and the proportional hazards model. Int J Prod Res 45:989–1012

    Article  MATH  Google Scholar 

  106. Thomas LC, Gaver DP, Jacobs PA (1991) Inspection models and their application. IMA J Math Appl Bus Ind 3:283–303

    Google Scholar 

  107. Kim YH, Thomas LC (2006) Repair strategies in an uncertain environment: Markov decision process approach. J Oper Res Soc 57:957–964

    Article  MATH  Google Scholar 

  108. International Electrotechnical Commission (2005) IEC 61400-1: wind turbines, #Part 1: design requirements, 3rd edn. IEC, Geneva

    Google Scholar 

  109. Fitzwater LM, Winterstein SR, Cornell CA (2002) Predicting the long term distribution of extreme loads from limited duration data: comparing full integration and approximate methods. J Sol Energy Eng 124:378–386

    Article  Google Scholar 

  110. Agarwal P, Manuel L (2009) Simulation of offshore wind turbine response for ultimate limit states. Eng Struct 31:2236–2246

    Article  Google Scholar 

  111. Fogle J, Agarwal P, Manuel L (2008) Towards an improved understanding of statistical extrapolation for wind turbine extreme loads. Wind Energy 11:613–635

    Article  Google Scholar 

  112. Hahn B, Durstewitz M, Rohrig K (2007) Reliability of wind turbines, experiences of 15 years with 1,500 WTs in wind energy. Springer, Berlin

    Google Scholar 

  113. NOAA—National Oceanic and Atmospheric Administration http://www.noaa.gov/

  114. ReliaSoft BlocSim-7 software (2007) http://www.reliasoft.com/products.htm/

  115. West Texas Mesonet (2008) http://www.mesonet.ttu.edu/

  116. Billinton R, Allan RN (1996) Reliability evaluation of power systems, 2nd edn. Plenum Press, New York

    Google Scholar 

  117. Negra N, Holmstrøm O, Bak-Jensen B, Sørensen P (2007) Wind farm generation assessment for reliability analysis of power systems. Wind Eng 31:383–400

    Article  Google Scholar 

  118. Borges CLT, Falcão DM (2001) Power system reliability by sequential Monte Carlo simulation on multicomputer platforms. Lect Notes Comput Sci 1981:242–253

    Google Scholar 

  119. Wang L, Singh C (2008) Adequacy assessment of power systems through hybridization of Monte Carlo simulation and artificial immune recognition system. In: Proceedings of the power systems computation conference, Glasgow

    Google Scholar 

  120. Blaabjerg F, Teodorescu R, Liserre M, Timbus AV (2006) Overview of control and grid synchronization for distributed power generation systems. IEEE Trans Ind Electron 53:1398–1409

    Article  Google Scholar 

  121. Kaldellis JK, Kavadias KA, Filios AE, Garofallakis S (2004) Income loss due to wind energy rejected by the Crete island electrical network—the present situation. Appl Energy 79:127–144

    Article  Google Scholar 

  122. Hansen AD, Cutululis N, Sørensen P, Iov F, Larsen TJ (2007) Simulation of a flexible wind turbine response to a grid fault. In: Proceedings of the 2007 European wind energy conference and exhibition, Milan

    Google Scholar 

  123. Chen Z, Guerrero JM, Blaabjerg F (2009) A review of the state of the art of power electronics for wind turbines. IEEE Trans Power Electron 24:1859–1875

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Ding .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Byon, E., Ntaimo, L., Singh, C., Ding, Y. (2013). Wind Energy Facility Reliability and Maintenance. In: Pardalos, P., Rebennack, S., Pereira, M., Iliadis, N., Pappu, V. (eds) Handbook of Wind Power Systems. Energy Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41080-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41080-2_19

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41079-6

  • Online ISBN: 978-3-642-41080-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics