Skip to main content

Optimal Distance Bounds for the Mahalanobis Distance

  • Conference paper
Similarity Search and Applications (SISAP 2013)

Abstract

The Mahalanobis distance, or quadratic form distance, is a distance measure commonly used for feature-based similarity search in scenarios where features are correlated. For efficient query processing on such data effective distance-based spatial pruning techniques are required. In this work we investigate such pruning techniques by means of distance bounds of the Mahalanobis distance in the presence of rectangular spatial approximations. Specifically we discuss how to transform the problem of computing minimum and maximum distance approximations between two minimum bounding rectangles (MBRs) into a quadratic optimization problem. Furthermore, we show how the recently developed concept of spatial domination can be solved under the Mahalanobis distance by a quadratic programming approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Warrens, M.J.: N-way metrics. Journal of Classification 27(2), 173–190 (2010)

    Article  MathSciNet  Google Scholar 

  2. Beecks, C., Uysal, M.S., Seidl, T.: Signature quadratic form distance. In: Proc. CIVR, pp. 438–445 (2010)

    Google Scholar 

  3. Beecks, C., Uysal, M.S., Seidl, T.: Similarity matrix compression for efficient signature quadratic form distance computation. In: Proc. SISAP, pp. 109–114 (2010)

    Google Scholar 

  4. Emrich, T., Kriegel, H.-P., Kröger, P., Renz, M., Züfle, A.: Boosting spatial pruning: On optimal pruning of MBRs. In: Proc. SIGMOD, pp. 39–50 (2010)

    Google Scholar 

  5. Gath, E.G., Hayes, K.: Bounds for the largest mahalanobis distance. Linear Algebra Appl. 419(1), 93–106 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Lokoc, J., Hetland, M.L., Skopal, T., Beecks, C.: Ptolemaic indexing of the signature quadratic form distance. In: Proc. SISAP, pp. 9–16 (2011)

    Google Scholar 

  7. Roussopoulos, N., Kelley, S., Vincent, F.: Nearest neighbor queries. In: Proc. SIGMOD, pp. 71–79 (1995)

    Google Scholar 

  8. Seidl, T., Kriegel, H.-P.: Efficient user-adaptable similarity search in large multimedia databases. In: Proc. VLDB, pp. 506–515 (1997)

    Google Scholar 

  9. Skopal, T., Bartos, T., Lokoc, J.: On (not) indexing quadratic form distance by metric access methods. In: Proc. EDBT, pp. 249–258 (2011)

    Google Scholar 

  10. Yang, L.: An overview of distance metric learning. Technical report, Department of Computer Science and Engineering, Michigan State University (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Emrich, T. et al. (2013). Optimal Distance Bounds for the Mahalanobis Distance. In: Brisaboa, N., Pedreira, O., Zezula, P. (eds) Similarity Search and Applications. SISAP 2013. Lecture Notes in Computer Science, vol 8199. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41062-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41062-8_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41061-1

  • Online ISBN: 978-3-642-41062-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics