Skip to main content

Pharmacological Potentials of Artemisinin and Related Sesquiterpene Lactones: Recent Advances and Trends

  • Chapter
  • First Online:
Artemisia annua - Pharmacology and Biotechnology

Abstract

Natural products represent a goldmine of innovative therapeutic molecules to prevent and/or treat human diseases. For over 1,000 years, malaria has been one of the major causes of suffering and death for mankind. Artemisinin is an unusual sesquiterpene lactone (SL) endoperoxide that has been isolated as the active principle of the Chinese antimalarial herb Artemisia annua L. Since artemisinin was discovered to be the active component of A. annua in the early 1970s, hundred of papers have focused on the antiparasitic effects of artemisinin and its semi-synthetic analogues. Nowadays, artemisinin and its derivatives have become essential components of antimalarial treatment and are recommended by the World Health Organization (WHO) to treat especially multidrug-resistant forms of malaria. These features have prompted various scientists around the world to evaluate the potential of artemisinin and derivatives to control other human diseases. This review will centre on the significant achievements in recent years (2000 to date) with regard the chemistry and biological properties of SL from A. annua, with particular attention on artemisinin and related compounds. The discussion will also focus on the understanding of its mechanism of action and structure/activity relationships.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ART:

Antiretroviral therapy

AL:

Artemether-Lumefantrine

ACTs:

Artemisinin-based combinatory therapies

CHS:

Contact hypersensitivity

CDK:

Cyclin-dependent kinase

COX-2:

Cyclooxygenase-2

CYP450:

Cytochrome P450

CMV:

Cytomegalovirus

DTH:

Delayed-type hypersensitivity

DNA:

Deoxyribonucleic Acid

DHA:

Dihydroartemisinin

EBV:

Epstein–Barr virus

ERK:

Extracellular signal-regulated kinase

HSV-1:

Herpes simplex virus type 1

HIV:

Human immunodeficiency virus

Igs:

Immunoglobulins

iNOS:

Inducible nitric oxide synthase

IκB:

Inhibitor of NF-kappaB

IC50 :

50 % Inhibitory concentration

ILs:

Interleukins

JNK:

Jun N-terminal kinase

LC50 :

Lethal concentration for 50 % mortality

LPS:

Lipopolysaccharide

MMP:

Matrix metalloproteinase

mRNA:

Messenger ribonucleic acid

MAPK:

Mitogen-activated protein kinase

NO:

Nitric oxide

NNRTIs:

Non-nucleoside reverse transcriptase inhibitors

NF-κB:

Nuclear factor-kappaB

PMA:

Phorbol myristate acetate

pFAK:

Phosphorylated focal adhesion kinase

PGE2 :

Prostaglandin E2

PIs:

Protease inhibitors

ROS:

Reactive oxygen species

PfATPase:

Sarcoplasmic/endoplasmic reticulum calcium adenosine triphosphate

SL:

Sesquiterpene lactone

TGF-β1:

Transforming growth factor-β1

TNBS:

2,4,6-trinitrobenzene sulphonic acid

TNF-α:

Tumour necrosis factor-α

VEGF:

Vascular endothelial growth factor

vWF:

von Willebrand factor

WHO:

World Health Organization

References

  • Alves MJ, Ferreira ICFR, Dias J, Teixeira V, Martins A, Pintado M (2012) A review on antimicrobial activity of mushroom (Basidiomycetes) extracts and isolated compounds. Planta Med 78:1707–1718

    Article  PubMed  CAS  Google Scholar 

  • Azimi Mohamadabadi M, Hassan ZM, Zavaran Hosseini A, Noori S, Mahdavi M, Maroufizadeh S, Maroof H (2013) Study of immunomodulatory effects of arteether administered intratumorally. Iran J Allergy Asthma Immunol 12:57–62

    PubMed  Google Scholar 

  • Batista R, Ade Silva JJr, de Oliveira AB (2009) Plant-derived antimalarial agents: new leads and efficient phytomedicines. Part II. Non-alkaloidal natural products. Molecules 14:3037–3072

    Google Scholar 

  • Berdelle N, Nikolova T, Quiros S, Efferth T, Kaina B (2011) Artesunate induces oxidative DNA damage, sustained DNA double-strand breaks, and the ATM/ATR damage response in cancer cells. Mol Cancer Ther 10:2224–2233

    Article  PubMed  CAS  Google Scholar 

  • Bero J, Frederich M, Quetin-Leclercq J (2009) Antimalarial compounds isolated from plants used in traditional medicine. J Pharm Pharmacol 61:1401–1433

    Article  PubMed  CAS  Google Scholar 

  • Bharati A, Kar M, Sabat SC (2012) Artemisinin inhibits chloroplast electron transport activity: mode of action. PLoS ONE 7:e38942

    Article  PubMed  CAS  Google Scholar 

  • Brown GD (2010) The biosynthesis of artemisinin (qinghaosu) and the phytochemistry of Artemisia annua L. (qinghao). Molecules 15:7603–7698

    Article  PubMed  CAS  Google Scholar 

  • Buommino E, Baroni A, Canozo N, Petrazzuolo M, Nicoletti R, Vozza A, Tufano MA (2009) Artemisinin reduces human melanoma cell migration by down-regulating αVβ-3 integrin and reducing metalloproteinase 2 production. Invest New Drugs 27:412–418

    Article  PubMed  CAS  Google Scholar 

  • Byakika-Kibwika P, Lamorde M, Mayanja-Kizza H, Khoo S, Merry C, Van Geertruyden JP (2011) Artemether-lumefantrine combination therapy for treatment of uncomplicated malaria: the potential for complex interactions with antiretroviral drugs in HIV-infected individuals. Malar Res Treat 61:455–467

    Google Scholar 

  • Byakika-Kibwika P, Lamorde M, Okaba-Kayom V, Mayanja-Kizza H, Katabira E, Hanpithakpong W, Pakker N, Dorlo TP, Tarning J, Lindegardh N, de Vries PJ, Back D, Khoo S, Merry C (2012) Lopinavir/ritonavir significantly influences pharmacokinetic exposure of artemether/lumefantrine in HIV-infected Ugandan adults. J Antimicrob Chemother 67:1217–1223

    Article  PubMed  CAS  Google Scholar 

  • Carrara VI, Lwin KM, Phyo AP, Ashley E, Wiladphaingern J, Sriprawat K, Rijken M, Boel M, McGready R, Proux S, Chu C, Singhasivanon P, White N, Nosten F (2013) Malaria burden and artemisinin resistance in the mobile and migrant population on the Thai-Myanmar border, 1999–2011: an observational study. PLoS Med 10:e1001398

    Article  PubMed  Google Scholar 

  • Chaudhari H, Mehta JB, Chaudhari K, Farrow J (2013) Treatment of cerebral malaria and acute respiratory distress syndrome (ARDS) with parenteral artesunate. Tenn Med 106:41–43

    PubMed  Google Scholar 

  • Cheng Q, Kyle DE, Gatton ML (2012) Artemisinin resistance in Plasmodium falciparum: a process linked to dormancy? Int J Parasitol Drug Resist 2:249–255

    Article  Google Scholar 

  • Cheng C, Ng DS, Chan TK, Guan SP, Ho WE, Koh AH, Bian JS, Lau HY, Wong WS (2013) Anti-allergic action of the anti-malarial drug artesunate in experimental mast cell-mediated anaphylactic models. Allergy 68:195–203

    Article  PubMed  CAS  Google Scholar 

  • Cho YC, Lee SH, Lee M, Kim HJ, Oak MH, Lee IS, Kang BY (2012) Enhanced IL-12p40 production in LPS-stimulated macrophages by inhibiting JNK activation by artemisinin. Arch Pharm Res 35:1961–1968

    Article  PubMed  CAS  Google Scholar 

  • Cordell GA, Colvard MD (2012) Natural products and traditional medicine: turning on a paradigm. J Nat Prod 75:514–525

    Article  PubMed  CAS  Google Scholar 

  • Cui L, Su XZ (2009) Discovery, mechanism of action and combination therapy of artemisinin. Expert Rev Anti Infect Ther 7:999–1013

    Article  PubMed  CAS  Google Scholar 

  • de Ridder S, van der Kooy F, Verpoorte R (2008) Artemisia annua as a self-reliant treatment for malaria in developing countries. J Ethnopharmacol 120:302–314

    Article  PubMed  Google Scholar 

  • del Cacho E, Gallego M, Francersh M, Quilez J, Sanchez-Acedo C (2010) Effects of artemisinin on oocyst wall formation and sporulation during Eimeria tenella infection. Parasitol Int 4:506–511

    Article  Google Scholar 

  • Dondorp AM, Nosten F, Yi P, Das D, Phyo AP, Tarning J, Lwin KH, Arieg F, Hanpithakpong W, Lee SJ, Ringwald P, Silamt K, Imwog M, Chotivanich K, Lim P, Herdman T, An SS, Yeung S, Singhavanon P, Day NP, Lindergardh N, Socheat D, White NJ (2009) Artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med 361:455–467

    Article  PubMed  CAS  Google Scholar 

  • Eckstein-Ludwig U, Webb RJ, van Goethem ID, East JM, Lee AG, Kimura M, O’Neill PM, Bray PG, Ward SA, Krishna S (2003) Artemisinins targets the SERCA of Plasmodium falciparum. Nature 424:957–961

    Article  PubMed  CAS  Google Scholar 

  • Efferth T (2007) Willmar Schwabe Award 2006: antiplasmodial and antitumor activity of artemisinin: from bench to bedside. Planta Med 73:299–309

    Article  PubMed  CAS  Google Scholar 

  • Efferth T, Romero MR, Wolf DG, Stamminger T, Marin JJ, Marschall M (2008) The antiviral activities of artemisinin and artesunate. Clin Infect Dis 47:804–811

    Article  PubMed  CAS  Google Scholar 

  • Efferth T, Herrmann F, Tahrani A, Wink M (2011) Cytotoxic activity of secondary metabolites derived from Artemisia annua L. towards cancer cells in comparison to its designated active constituent artemisinin. Phytomedicine 18:959–969

    Article  PubMed  CAS  Google Scholar 

  • El-Beshbishi SN, Taman A, El-Malky M, Azab MS, El-Hawary AK, El-Tantawy DA (2013) First insight into the effect of single oral dose therapy with artemisinin-naphthoquinone phosphate combination in a mouse model of Schistosoma mansoni infection. Int J Parasitol 43:521–530

    Article  PubMed  CAS  Google Scholar 

  • Fathy FM (2011) Anthelmintic effect of artesunate in experimental heterophyid infection. J Egypt Soc Parasitol 41:469–483

    PubMed  Google Scholar 

  • Firestone GL, Sundar SN (2009) Anticancer activities of artemisinin and its bioactive derivatives. Expert Rev Mol Med 11:32–36

    Article  Google Scholar 

  • Goswani S, Bhakuni RS, Chiniah A, Pal A, Kar SK, Das PK (2012) Anti-Helicobacter pylori potential of artemisinin and its derivatives. Antimicrob Agents Chemother 56:4594–4607

    Article  Google Scholar 

  • Haynes RK (2006) From artemisinin to new artemisinin antimalarials: biosynthesis, extraction, old and new derivatives, stereochemistry and medicinal chemistry requirements. Curr Top Med Chem 6:509–537

    Article  PubMed  CAS  Google Scholar 

  • Haynes RK, Chan WC, Lung CM, Uhleman AC, Eckstein U, Taramelli D, Parapini S, Monti D, Krishna S (2007) The Fe2+-mediated decomposition, PfATP6 binding, and antimalarial activities of artemisone and other artemisinins: the unlikelihood of C-centered radicals as bioactive intermediates. Chem Med Chem 2:1480–1497

    PubMed  CAS  Google Scholar 

  • Hsu E (2006) Reflections on the “discovery” of the antimalarial qinghao. Br J Clin Pharmacol 61:666–670

    Article  PubMed  Google Scholar 

  • Huan-Huan C, Li-Li Y, Shang-Bin L (2004) Artesunate reduces chicken chorioallantoic membrane neovascularisation and exhibits antiangiogenic and apoptotic activity on human microvascular dermal endothelial cells. Cancer Lett 211:163–173

    Article  PubMed  Google Scholar 

  • Jelinek T (2013) Artemisinin based combination therapy in travel medicine. Travel Med Infect Dis 11:23–28

    Article  PubMed  Google Scholar 

  • Kaur K, Jain M, Kaur T, Jain R (2009) Antimalarials from nature. Bioorg Med Chem 17:3229–3256

    Article  PubMed  CAS  Google Scholar 

  • Kim HG, Yang JH, Han EH, Choi JH, Khanal T, Jeong MH, Jeomg TC, Jeong HG (2013) Inhibitory effect of dihydroartemisinin against phorbol ester-induced cyclooxygenase-2 expression in macrophages. Food Chem Toxicol 56:93–99

    Article  PubMed  CAS  Google Scholar 

  • Klonis N, Xie SC, McCaw JM, Crespo-Ortiz M, Zaloumis SG, Simpson JA, Tilley L (2013) Altered temporal response of malaria parasites determines differential sensitivity to artemisinin. PNAS 110:5157–5162

    Article  PubMed  CAS  Google Scholar 

  • Konkimalla VB, Blunder M, Korn B, Soomro SA, Jansen H, Chang W, Posner GH, Bauer R, Efferth T (2008) Effects of artemisinins and other endoperoxides on nitric oxide-related signalling pathway in RAW 264.7 mouse macrophage cells. Nitric Oxide 19:184–191

    Article  PubMed  CAS  Google Scholar 

  • Krishna S, Bustamante L, Haynes RK, Staines HM (2008) Artemisinins: their growing importance in medicine. Trend Pharm Sci 29:520–527

    Article  CAS  Google Scholar 

  • Kuhn T, Wang Y (2008) Artemisinin: an innovative cornerstone for anti-malaria therapy. Prog Drug Res 66:383–422

    PubMed  Google Scholar 

  • Kumar S, Epstein JE, Richie TL, Nkrumah FK, Soisson L, Carucci DJ, Hoffman SL (2002) A multilateral effort to develop DNA vaccines against falciparum malaria. Trends Parasitol 18:129–135

    Article  PubMed  CAS  Google Scholar 

  • Kyaw MP, Nyunt MH, Chit K, Aye MM, Lindegardh N, Tarning J, Imwog M, Jacob CG, Rasmussen C, Perin J, Ringwald P, Nyunt MM (2013) Reduced susceptibility of Plasmodium falciparum to artesunate in Southern Myanmar. PLoS ONE 8:e57689

    Article  PubMed  CAS  Google Scholar 

  • Lee J, Kim MH, Lee JH, Jung E, Yoo ES, Park D (2012) Artemisinic acid is a regulator of adipocyte differentiation and C/EBP δ expression. J Cell Biochem 113:2488–2499

    Article  PubMed  CAS  Google Scholar 

  • Li PC, Lam E, Roos WP, Zdzienicka MZ, Kaina B, Efferth T (2008) Artesunate derived from traditional Chinese medicines induces DNA damage and repair. Cancer Res 68:4347–4351

    Article  PubMed  CAS  Google Scholar 

  • Li Q, Wu Y, Huang J (2011) Studies on allelopathic effect of artemisinin on rhizobium. Zhongguo Zhong Yao Za Zhi 36:3428–3433

    PubMed  Google Scholar 

  • Li T, Chen H, Wei N, Mei X, Zhang S, Liu DL, Gao Y, Bai SF, Liu XG, Zhou YX (2012) Anti-inflammatory and immunomodulatory mechanisms of artemisinin on contact hypersensitivity. Int Immunopharmacol 12:144–150

    Article  PubMed  CAS  Google Scholar 

  • Li T, Chen H, Yang Z, Liu XG, Yang JN, Wang H (2013) Evaluation of the immunosuppressive activity of artesunate in vitro and in vivo. Int Immunopharmacol 16:306–312

    Article  PubMed  CAS  Google Scholar 

  • Lu YY, Chen TS, Qu JL, Pan WL, Sun LO, Wei XB (2009) Dihydroartemisinin (DHA) induces caspase-3-dependent apoptosis in human lung adenocarcinoma ASTC-A-1 cells. J Biomed Sci 16:1–15

    Article  Google Scholar 

  • Lu YY, Chen TS, Wang SP, Li L (2010) Single-cell analysis of dihydroartemisinin-induced apoptosis through reactive oxygen species-mediated caspase-8 activation and mitochondrial pathway in ASTC-A-1 cells using fluorescence imaging techniques. J Biomed Opt 15:46028–46044

    Article  Google Scholar 

  • Lu JJ, Yang Z, Lu DZ, Wo XD, Shi JJ, Lin TQ, Wang MM, Li Y, Tang LH (2012) Dihydroartemisinin-induced inhibition of proliferation in BEL-7402 cells: an analysis of the mitochondrial proteome. Mol Med Rep 6:429–433

    PubMed  CAS  Google Scholar 

  • Maggi ME, Mangeaud A, Carpinella MC, Ferrayoli CG, Valladares GR, Palacios SM (2005) Laboratory evaluation of Artemisia annua L. extract and artemisinin activity against Epilachna paenulata and Spodoptera eridania. J Chem Ecol 31:1527–1536

    Article  PubMed  CAS  Google Scholar 

  • Miller LH, Ackerman HC, Su X, Wellems TE (2013) Malaria biology and disease pathogenesis: insights for new treatments. Nat Med 19:156–167

    Article  PubMed  CAS  Google Scholar 

  • Mishra LC, Bhattacharya A, Bhasin VK (2009) Phytochemical licochalcone A enhances antimalarial activity of artemisinin in vitro. Acta Trop 109:194–198

    Article  PubMed  CAS  Google Scholar 

  • Mu D, Chen W, Yu B, Zhang C, Zhang Y, Qi H (2007) Calcium and survivin are involved in the in the induction of apoptosis by dihydroartemisinin in human lung cancer SPC-A-1 cells. Methods Find Exp Clin Pharmacol 29:33–38

    Article  PubMed  CAS  Google Scholar 

  • Mustfa K, Landau I, Chabaud AG, Chavatte JM, Chandenier J, Duong TH, Richard-Lenoble D (2011) Effects of antimalarial drugs ferroquine and artesunate on Plasmodium yoelii gametocytogenesis and vectorial transmission. Sante 21:133–142

    PubMed  Google Scholar 

  • Nam W, Tak J, Ryu JK, Jung M, Yook JL, Kim HJ, Cha IH (2007) Effects of artemisinin and its derivatives on growth inhibition and apoptosis of oral cancer cells. Head Neck 29:335–340

    Article  PubMed  Google Scholar 

  • Newman DJ, Cragg GM (2012) Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod 75:311–335

    Article  PubMed  CAS  Google Scholar 

  • Ni L, Acharya K, Hao X, Li S, Li Y, Li Y (2012a) Effects of artemisinin on photosystem II performance of Microcystis aeruginosa by in vivo chlorophyll fluorescence. Bull Environ Contam Toxicol 89:1165–1169

    Article  PubMed  CAS  Google Scholar 

  • Ni L, Acharya K, Hao X, Li S (2012b) Isolation and identification of an anti-algal compound from Artemisia annua and mechanisms of inhibitory effect on algae. Chemosphere 88:1051–1057

    Article  PubMed  CAS  Google Scholar 

  • Noedl M, Se Y, Schaecher K, Smith BL, Socheat D, Fukuda MM (2008) Evidence of artemisinin-resistant malaria in western Cambodia. N Engl J Med 359:2619–2620

    Article  PubMed  CAS  Google Scholar 

  • Noori S, Naderi GA, Hassan ZM, Habibi Z, Bathaie SZ, Hashemi SMM (2004) Immunosuppressive activity of a molecule isolated from Artemisias annua on DTH responses compared with cyclosporine A. Int Immunopharmacol 4:1301–1306

    Article  PubMed  CAS  Google Scholar 

  • Noori S, Hassan ZM, Rezai B, Rustaiyan A, Habibi Z, Fallahian F (2008) Artemisinin can inhibit the calmodulin-mediated activation of phosphodiesterase in comparison with cyclosporin A. Int Immunopharmacol 8:1744–1747

    Article  PubMed  CAS  Google Scholar 

  • Ogutu B (2013) Artemether and lumefantrine for the treatment of uncomplicated Plasmodium falciparum malaria in sub-Saharan Africa. Expert Opin Pharmacother 14:643–654

    Article  PubMed  CAS  Google Scholar 

  • Pareek A, Chandurkar N, Srivastav V, Lakhani J, Karmakar PS, Basu S, Ray A, Pednekar S, Gupta PB, Suthar N, Lakijani S (2013) Comparative evaluation of efficacy and safety of artesunate-lumefantrine vs. artemether–lumefantrine fixed-dose combination in the treatment of uncomplicated Plasmodium falciparum malaria. Trop Med Int Health 18:578–587

    Article  PubMed  CAS  Google Scholar 

  • Price RN (2013) Potential of artemisinin-based combination therapies to block malaria transmission. J Infect Dis 207:1627–1629

    Article  PubMed  Google Scholar 

  • Ren YR (2012) In vitro antitumor activities and mechanisms of galactosylated artemisinin. Zhong Yao Cai 35:1116–1120

    PubMed  CAS  Google Scholar 

  • Ricci J, Kim M, Chung WY, Park KK, Jung M (2011) Discovery of artemisinin-glycolipid hybrids as an anti-oral cancer agents. Chem Pharm Bull 59:1471–1475

    Article  PubMed  CAS  Google Scholar 

  • Romero MR, Serrano MA, Vallejo M, Efferth T, Alvarez M, Marin JJ (2006) Antiviral effect of artemisinin from Artemisia annua against a model member of the Flaviviridae family, the bovine viral diarrhoea virus (BVDV). Planta Med 72:1169–1174

    Article  PubMed  CAS  Google Scholar 

  • Sarina S, Yagi Y, Nakano O, Hashimoto T, Kimura K, Asakawa Y, Zhong M, Narimatsu S, Gohda E (2013) Induction of neurite outgrowth in PC12 cells by artemisinin through activation of ERK and p38 MAPK signalling pathways. Brain Res 1490:61–71

    Article  PubMed  CAS  Google Scholar 

  • Sen R, Ganguly S, Saha P, Chatterjee M (2010) Efficacy of artemisinin in experimental visceral leishmaniasis. Int J Antimicrob Agents 36:43–49

    Article  PubMed  CAS  Google Scholar 

  • Sharma G, Kumar K, Sharma A, Agrawal V (2012) Bioassay of Artemisia annua leaf extracts and artemisinin against larvae of Culex quinquefasciatus and Culex tritaeniorhynchus. J Am Mosq Control Assoc 28:317–319

    Article  PubMed  Google Scholar 

  • Sher A (2009) Antimicrobial activity of natural products from medicinal plants. Gomal J Med Sci 7:72–78

    Google Scholar 

  • Shi JQ, Zhang CC, Sun XL, Cheng XX, Wang JB, Zhang YD, Xu J, Zou HQ (2013) Antimalarial drug artemisinin extenuates amyloidogenesis and neuroinflammation in APPswe/PS1dE9 transgenic mice via inhibition of nuclear factor-κB and NLRP3 inflammasome activation. CNS Neurosci Ther 19:262–268

    Article  PubMed  CAS  Google Scholar 

  • Sullivan DJJr (2013) Timing is everything for artemisinin action. Proc Natl Acad Sci USA 110:4866–4867

    Article  PubMed  CAS  Google Scholar 

  • Tangnitipong S, Thaptimthong T, Srihirun S, Unchern S, Kittikool D, Udomsangpetch R, Sibmooh N (2012) Extracellular heme enhances the antimalarial activity of artemisinin. Biol Pharm Bull 35:29–33

    Article  PubMed  CAS  Google Scholar 

  • Taylor S, Berridge V (2006) Medicinal plants and malaria: an historical case study of research at the London school of hygiene and tropical medicine in the twentieth century. Trans R Soc Trop Med Hyg 100:707–714

    Article  PubMed  Google Scholar 

  • Thiengsusuk A, Chaijaroenkul W, Na-Bangchang K (2013) Antimalarial activities of medicinal plants and herbal formulations used in Thai traditional medicine. Parasitol Res 112:1475–1481

    Article  PubMed  Google Scholar 

  • Thofner ICN, Liebhart D, Hess M, Schou TW, Hess C, Ivarsen E, Frette XC, Christensen LP, Grevsen K, Engber RM, Christensen JP (2012) Antihistomonal effects of artemisinin and Artemisia annua extracts in vitro could not be confirmed by in vivo experiments in turkeys and chickens. Avian Pathol 41:487–496

    Article  PubMed  CAS  Google Scholar 

  • Tin AS, Sundar SN, Tran KQ, Park AH, Poindexter KM, Firestone GL (2012) Antiproliferative effects of artemisinin on human breast cancer cells requires the downregulated expression of the E2F1 transcription factor and loss of E2F1-target cell cycle genes. Anticancer Drugs 23:370–379

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Fang BW, Peng LX (2012) Impact of artesunate on the expression and secretion of transforming growth factor-β1 of primary rat hepatic stellate cells. Zhonghua Gao Zang Bing Za Zhi 20:294–299

    CAS  Google Scholar 

  • Wells S, Diap G, Kiechel JR (2013) The story of artesunate-mefloquine (ASMQ), innovative partnerships in drug development: case study. Malar J 12:68–78

    Article  PubMed  CAS  Google Scholar 

  • White NJ (2008) Qinghaosu (artemisinin): the price of success. Science 320:330–334

    Article  PubMed  CAS  Google Scholar 

  • Willoughby JASr, Sundar SN, Cheung M, Tin AS, Modiano J, Firestone GL (2009) Artemisinin blocks prostate cancer growth and cell cycle progression by disrupting Sp1 interactions with the cyclin-dependent kinase-4 (CDK4) promoter and inhibiting CDK4 gene expression. J Biol Chem 284:2203–2213

    Article  PubMed  CAS  Google Scholar 

  • Wongsrichanalai C (2013) Artemisinin resistance or artemisinin-based combination therapy resistance? Lancet Infect Dis 13:114–115

    Article  PubMed  CAS  Google Scholar 

  • Wu B, Hu K, Li S, Zhu J, Gu L, Shen H, Hambly BD, Bao S, Di W (2012a) Dihydroartemisinin inhibits the growth and metastasis of epithelial ovarian cancer. Oncol Rep 27:101–108

    PubMed  Google Scholar 

  • Wu XL, Sun WS, Shi XM, Wang Z, An P, Qiao CL (2012b) Effect of artemisinin on the expressions of GRα mRNA, GRβ mRNA and P300/CBP protein in lupus nephritis mice. Zhong Yao Cai 35:608–612

    PubMed  CAS  Google Scholar 

  • Yang Z, Ding J, Yang C, Gao Y, Li X, Chen X, Peng Y, Fang J, Xiao S (2012) Immunomodulatory and anti-inflammatory properties of artesunate in experimental colitis. Curr Med Chem 19:4541–4551

    Article  PubMed  CAS  Google Scholar 

  • Yao Q, Chen J, Lyu PH, Zhang SJ, Ma FC, Fang JG (2012) Knowledge map of artemisinin research in SCI and medline database. J Vector Borne Dis 49:205–216

    PubMed  Google Scholar 

  • Zhang CZ, Zhang H, Yun J, Chen CG, Lai PB (2012) Dihydroartemisinin exhibits antitumor activity toward hepatocellular carcinoma in vitro and in vivo. Biochem Pharmacol 83:1278–1289

    Article  PubMed  CAS  Google Scholar 

  • Zhang JL, Wang Z, Hu W, Chen SS, Lou XE, Zhou HJ (2013) DHA regulates angiogenesis and improves the efficiency of CDDP for the treatment of lung carcinoma. Microvasc Res 87:14–24

    Article  PubMed  CAS  Google Scholar 

  • Zhao YG, Wang Y, Guo Z, Gu AD, Dan HC, Baldwin AS, Hao W, Wan YY (2012) Dihydroartemisinin ameliorates inflammatory disease by its reciprocal effects on Th and regulatory T cell function via modulating the mammalian target of rapamycin pathway. J Immunol 189:4417–4425

    Article  PubMed  CAS  Google Scholar 

  • Zhou HJ, Wang WQ, Wu GD, Lee J, Li A (2007) Artesunate inhibits angiogenesis and downregulates vascular endothelial growth factor expression in chronic myeloid leukemia K562 cells. Vas Pharmacol 47:131–138

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The technical assistance of Ms. Brooke-Turner is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María José Abad Martínez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Martínez, M.J.A., del Olmo, L.M.B., Ticona, L.A., Benito, P.B. (2014). Pharmacological Potentials of Artemisinin and Related Sesquiterpene Lactones: Recent Advances and Trends. In: Aftab, T., Ferreira, J., Khan, M., Naeem, M. (eds) Artemisia annua - Pharmacology and Biotechnology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41027-7_5

Download citation

Publish with us

Policies and ethics