Advertisement

Pharmacological Potentials of Artemisinin and Related Sesquiterpene Lactones: Recent Advances and Trends

  • María José Abad Martínez
  • Luis Miguel Bedoya del Olmo
  • Luis Apaza Ticona
  • Paulina Bermejo Benito
Chapter

Abstract

Natural products represent a goldmine of innovative therapeutic molecules to prevent and/or treat human diseases. For over 1,000 years, malaria has been one of the major causes of suffering and death for mankind. Artemisinin is an unusual sesquiterpene lactone (SL) endoperoxide that has been isolated as the active principle of the Chinese antimalarial herb Artemisia annua L. Since artemisinin was discovered to be the active component of A. annua in the early 1970s, hundred of papers have focused on the antiparasitic effects of artemisinin and its semi-synthetic analogues. Nowadays, artemisinin and its derivatives have become essential components of antimalarial treatment and are recommended by the World Health Organization (WHO) to treat especially multidrug-resistant forms of malaria. These features have prompted various scientists around the world to evaluate the potential of artemisinin and derivatives to control other human diseases. This review will centre on the significant achievements in recent years (2000 to date) with regard the chemistry and biological properties of SL from A. annua, with particular attention on artemisinin and related compounds. The discussion will also focus on the understanding of its mechanism of action and structure/activity relationships.

Keywords

Visceral Leishmaniasis Bovine Viral Diarrhoea Virus Antimalarial Activity Sesquiterpene Lactone NLRP3 Inflammasome Activation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

ART

Antiretroviral therapy

AL

Artemether-Lumefantrine

ACTs

Artemisinin-based combinatory therapies

CHS

Contact hypersensitivity

CDK

Cyclin-dependent kinase

COX-2

Cyclooxygenase-2

CYP450

Cytochrome P450

CMV

Cytomegalovirus

DTH

Delayed-type hypersensitivity

DNA

Deoxyribonucleic Acid

DHA

Dihydroartemisinin

EBV

Epstein–Barr virus

ERK

Extracellular signal-regulated kinase

HSV-1

Herpes simplex virus type 1

HIV

Human immunodeficiency virus

Igs

Immunoglobulins

iNOS

Inducible nitric oxide synthase

IκB

Inhibitor of NF-kappaB

IC50

50 % Inhibitory concentration

ILs

Interleukins

JNK

Jun N-terminal kinase

LC50

Lethal concentration for 50 % mortality

LPS

Lipopolysaccharide

MMP

Matrix metalloproteinase

mRNA

Messenger ribonucleic acid

MAPK

Mitogen-activated protein kinase

NO

Nitric oxide

NNRTIs

Non-nucleoside reverse transcriptase inhibitors

NF-κB

Nuclear factor-kappaB

PMA

Phorbol myristate acetate

pFAK

Phosphorylated focal adhesion kinase

PGE2

Prostaglandin E2

PIs

Protease inhibitors

ROS

Reactive oxygen species

PfATPase

Sarcoplasmic/endoplasmic reticulum calcium adenosine triphosphate

SL

Sesquiterpene lactone

TGF-β1

Transforming growth factor-β1

TNBS

2,4,6-trinitrobenzene sulphonic acid

TNF-α

Tumour necrosis factor-α

VEGF

Vascular endothelial growth factor

vWF

von Willebrand factor

WHO

World Health Organization

Notes

Acknowledgments

The technical assistance of Ms. Brooke-Turner is gratefully acknowledged.

References

  1. Alves MJ, Ferreira ICFR, Dias J, Teixeira V, Martins A, Pintado M (2012) A review on antimicrobial activity of mushroom (Basidiomycetes) extracts and isolated compounds. Planta Med 78:1707–1718PubMedCrossRefGoogle Scholar
  2. Azimi Mohamadabadi M, Hassan ZM, Zavaran Hosseini A, Noori S, Mahdavi M, Maroufizadeh S, Maroof H (2013) Study of immunomodulatory effects of arteether administered intratumorally. Iran J Allergy Asthma Immunol 12:57–62PubMedGoogle Scholar
  3. Batista R, Ade Silva JJr, de Oliveira AB (2009) Plant-derived antimalarial agents: new leads and efficient phytomedicines. Part II. Non-alkaloidal natural products. Molecules 14:3037–3072Google Scholar
  4. Berdelle N, Nikolova T, Quiros S, Efferth T, Kaina B (2011) Artesunate induces oxidative DNA damage, sustained DNA double-strand breaks, and the ATM/ATR damage response in cancer cells. Mol Cancer Ther 10:2224–2233PubMedCrossRefGoogle Scholar
  5. Bero J, Frederich M, Quetin-Leclercq J (2009) Antimalarial compounds isolated from plants used in traditional medicine. J Pharm Pharmacol 61:1401–1433PubMedCrossRefGoogle Scholar
  6. Bharati A, Kar M, Sabat SC (2012) Artemisinin inhibits chloroplast electron transport activity: mode of action. PLoS ONE 7:e38942PubMedCrossRefGoogle Scholar
  7. Brown GD (2010) The biosynthesis of artemisinin (qinghaosu) and the phytochemistry of Artemisia annua L. (qinghao). Molecules 15:7603–7698PubMedCrossRefGoogle Scholar
  8. Buommino E, Baroni A, Canozo N, Petrazzuolo M, Nicoletti R, Vozza A, Tufano MA (2009) Artemisinin reduces human melanoma cell migration by down-regulating αVβ-3 integrin and reducing metalloproteinase 2 production. Invest New Drugs 27:412–418PubMedCrossRefGoogle Scholar
  9. Byakika-Kibwika P, Lamorde M, Mayanja-Kizza H, Khoo S, Merry C, Van Geertruyden JP (2011) Artemether-lumefantrine combination therapy for treatment of uncomplicated malaria: the potential for complex interactions with antiretroviral drugs in HIV-infected individuals. Malar Res Treat 61:455–467Google Scholar
  10. Byakika-Kibwika P, Lamorde M, Okaba-Kayom V, Mayanja-Kizza H, Katabira E, Hanpithakpong W, Pakker N, Dorlo TP, Tarning J, Lindegardh N, de Vries PJ, Back D, Khoo S, Merry C (2012) Lopinavir/ritonavir significantly influences pharmacokinetic exposure of artemether/lumefantrine in HIV-infected Ugandan adults. J Antimicrob Chemother 67:1217–1223PubMedCrossRefGoogle Scholar
  11. Carrara VI, Lwin KM, Phyo AP, Ashley E, Wiladphaingern J, Sriprawat K, Rijken M, Boel M, McGready R, Proux S, Chu C, Singhasivanon P, White N, Nosten F (2013) Malaria burden and artemisinin resistance in the mobile and migrant population on the Thai-Myanmar border, 1999–2011: an observational study. PLoS Med 10:e1001398PubMedCrossRefGoogle Scholar
  12. Chaudhari H, Mehta JB, Chaudhari K, Farrow J (2013) Treatment of cerebral malaria and acute respiratory distress syndrome (ARDS) with parenteral artesunate. Tenn Med 106:41–43PubMedGoogle Scholar
  13. Cheng Q, Kyle DE, Gatton ML (2012) Artemisinin resistance in Plasmodium falciparum: a process linked to dormancy? Int J Parasitol Drug Resist 2:249–255CrossRefGoogle Scholar
  14. Cheng C, Ng DS, Chan TK, Guan SP, Ho WE, Koh AH, Bian JS, Lau HY, Wong WS (2013) Anti-allergic action of the anti-malarial drug artesunate in experimental mast cell-mediated anaphylactic models. Allergy 68:195–203PubMedCrossRefGoogle Scholar
  15. Cho YC, Lee SH, Lee M, Kim HJ, Oak MH, Lee IS, Kang BY (2012) Enhanced IL-12p40 production in LPS-stimulated macrophages by inhibiting JNK activation by artemisinin. Arch Pharm Res 35:1961–1968PubMedCrossRefGoogle Scholar
  16. Cordell GA, Colvard MD (2012) Natural products and traditional medicine: turning on a paradigm. J Nat Prod 75:514–525PubMedCrossRefGoogle Scholar
  17. Cui L, Su XZ (2009) Discovery, mechanism of action and combination therapy of artemisinin. Expert Rev Anti Infect Ther 7:999–1013PubMedCrossRefGoogle Scholar
  18. de Ridder S, van der Kooy F, Verpoorte R (2008) Artemisia annua as a self-reliant treatment for malaria in developing countries. J Ethnopharmacol 120:302–314PubMedCrossRefGoogle Scholar
  19. del Cacho E, Gallego M, Francersh M, Quilez J, Sanchez-Acedo C (2010) Effects of artemisinin on oocyst wall formation and sporulation during Eimeria tenella infection. Parasitol Int 4:506–511CrossRefGoogle Scholar
  20. Dondorp AM, Nosten F, Yi P, Das D, Phyo AP, Tarning J, Lwin KH, Arieg F, Hanpithakpong W, Lee SJ, Ringwald P, Silamt K, Imwog M, Chotivanich K, Lim P, Herdman T, An SS, Yeung S, Singhavanon P, Day NP, Lindergardh N, Socheat D, White NJ (2009) Artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med 361:455–467PubMedCrossRefGoogle Scholar
  21. Eckstein-Ludwig U, Webb RJ, van Goethem ID, East JM, Lee AG, Kimura M, O’Neill PM, Bray PG, Ward SA, Krishna S (2003) Artemisinins targets the SERCA of Plasmodium falciparum. Nature 424:957–961PubMedCrossRefGoogle Scholar
  22. Efferth T (2007) Willmar Schwabe Award 2006: antiplasmodial and antitumor activity of artemisinin: from bench to bedside. Planta Med 73:299–309PubMedCrossRefGoogle Scholar
  23. Efferth T, Romero MR, Wolf DG, Stamminger T, Marin JJ, Marschall M (2008) The antiviral activities of artemisinin and artesunate. Clin Infect Dis 47:804–811PubMedCrossRefGoogle Scholar
  24. Efferth T, Herrmann F, Tahrani A, Wink M (2011) Cytotoxic activity of secondary metabolites derived from Artemisia annua L. towards cancer cells in comparison to its designated active constituent artemisinin. Phytomedicine 18:959–969PubMedCrossRefGoogle Scholar
  25. El-Beshbishi SN, Taman A, El-Malky M, Azab MS, El-Hawary AK, El-Tantawy DA (2013) First insight into the effect of single oral dose therapy with artemisinin-naphthoquinone phosphate combination in a mouse model of Schistosoma mansoni infection. Int J Parasitol 43:521–530PubMedCrossRefGoogle Scholar
  26. Fathy FM (2011) Anthelmintic effect of artesunate in experimental heterophyid infection. J Egypt Soc Parasitol 41:469–483PubMedGoogle Scholar
  27. Firestone GL, Sundar SN (2009) Anticancer activities of artemisinin and its bioactive derivatives. Expert Rev Mol Med 11:32–36CrossRefGoogle Scholar
  28. Goswani S, Bhakuni RS, Chiniah A, Pal A, Kar SK, Das PK (2012) Anti-Helicobacter pylori potential of artemisinin and its derivatives. Antimicrob Agents Chemother 56:4594–4607CrossRefGoogle Scholar
  29. Haynes RK (2006) From artemisinin to new artemisinin antimalarials: biosynthesis, extraction, old and new derivatives, stereochemistry and medicinal chemistry requirements. Curr Top Med Chem 6:509–537PubMedCrossRefGoogle Scholar
  30. Haynes RK, Chan WC, Lung CM, Uhleman AC, Eckstein U, Taramelli D, Parapini S, Monti D, Krishna S (2007) The Fe2+-mediated decomposition, PfATP6 binding, and antimalarial activities of artemisone and other artemisinins: the unlikelihood of C-centered radicals as bioactive intermediates. Chem Med Chem 2:1480–1497PubMedGoogle Scholar
  31. Hsu E (2006) Reflections on the “discovery” of the antimalarial qinghao. Br J Clin Pharmacol 61:666–670PubMedCrossRefGoogle Scholar
  32. Huan-Huan C, Li-Li Y, Shang-Bin L (2004) Artesunate reduces chicken chorioallantoic membrane neovascularisation and exhibits antiangiogenic and apoptotic activity on human microvascular dermal endothelial cells. Cancer Lett 211:163–173PubMedCrossRefGoogle Scholar
  33. Jelinek T (2013) Artemisinin based combination therapy in travel medicine. Travel Med Infect Dis 11:23–28PubMedCrossRefGoogle Scholar
  34. Kaur K, Jain M, Kaur T, Jain R (2009) Antimalarials from nature. Bioorg Med Chem 17:3229–3256PubMedCrossRefGoogle Scholar
  35. Kim HG, Yang JH, Han EH, Choi JH, Khanal T, Jeong MH, Jeomg TC, Jeong HG (2013) Inhibitory effect of dihydroartemisinin against phorbol ester-induced cyclooxygenase-2 expression in macrophages. Food Chem Toxicol 56:93–99PubMedCrossRefGoogle Scholar
  36. Klonis N, Xie SC, McCaw JM, Crespo-Ortiz M, Zaloumis SG, Simpson JA, Tilley L (2013) Altered temporal response of malaria parasites determines differential sensitivity to artemisinin. PNAS 110:5157–5162PubMedCrossRefGoogle Scholar
  37. Konkimalla VB, Blunder M, Korn B, Soomro SA, Jansen H, Chang W, Posner GH, Bauer R, Efferth T (2008) Effects of artemisinins and other endoperoxides on nitric oxide-related signalling pathway in RAW 264.7 mouse macrophage cells. Nitric Oxide 19:184–191PubMedCrossRefGoogle Scholar
  38. Krishna S, Bustamante L, Haynes RK, Staines HM (2008) Artemisinins: their growing importance in medicine. Trend Pharm Sci 29:520–527CrossRefGoogle Scholar
  39. Kuhn T, Wang Y (2008) Artemisinin: an innovative cornerstone for anti-malaria therapy. Prog Drug Res 66:383–422PubMedGoogle Scholar
  40. Kumar S, Epstein JE, Richie TL, Nkrumah FK, Soisson L, Carucci DJ, Hoffman SL (2002) A multilateral effort to develop DNA vaccines against falciparum malaria. Trends Parasitol 18:129–135PubMedCrossRefGoogle Scholar
  41. Kyaw MP, Nyunt MH, Chit K, Aye MM, Lindegardh N, Tarning J, Imwog M, Jacob CG, Rasmussen C, Perin J, Ringwald P, Nyunt MM (2013) Reduced susceptibility of Plasmodium falciparum to artesunate in Southern Myanmar. PLoS ONE 8:e57689PubMedCrossRefGoogle Scholar
  42. Lee J, Kim MH, Lee JH, Jung E, Yoo ES, Park D (2012) Artemisinic acid is a regulator of adipocyte differentiation and C/EBP δ expression. J Cell Biochem 113:2488–2499PubMedCrossRefGoogle Scholar
  43. Li PC, Lam E, Roos WP, Zdzienicka MZ, Kaina B, Efferth T (2008) Artesunate derived from traditional Chinese medicines induces DNA damage and repair. Cancer Res 68:4347–4351PubMedCrossRefGoogle Scholar
  44. Li Q, Wu Y, Huang J (2011) Studies on allelopathic effect of artemisinin on rhizobium. Zhongguo Zhong Yao Za Zhi 36:3428–3433PubMedGoogle Scholar
  45. Li T, Chen H, Wei N, Mei X, Zhang S, Liu DL, Gao Y, Bai SF, Liu XG, Zhou YX (2012) Anti-inflammatory and immunomodulatory mechanisms of artemisinin on contact hypersensitivity. Int Immunopharmacol 12:144–150PubMedCrossRefGoogle Scholar
  46. Li T, Chen H, Yang Z, Liu XG, Yang JN, Wang H (2013) Evaluation of the immunosuppressive activity of artesunate in vitro and in vivo. Int Immunopharmacol 16:306–312PubMedCrossRefGoogle Scholar
  47. Lu YY, Chen TS, Qu JL, Pan WL, Sun LO, Wei XB (2009) Dihydroartemisinin (DHA) induces caspase-3-dependent apoptosis in human lung adenocarcinoma ASTC-A-1 cells. J Biomed Sci 16:1–15CrossRefGoogle Scholar
  48. Lu YY, Chen TS, Wang SP, Li L (2010) Single-cell analysis of dihydroartemisinin-induced apoptosis through reactive oxygen species-mediated caspase-8 activation and mitochondrial pathway in ASTC-A-1 cells using fluorescence imaging techniques. J Biomed Opt 15:46028–46044CrossRefGoogle Scholar
  49. Lu JJ, Yang Z, Lu DZ, Wo XD, Shi JJ, Lin TQ, Wang MM, Li Y, Tang LH (2012) Dihydroartemisinin-induced inhibition of proliferation in BEL-7402 cells: an analysis of the mitochondrial proteome. Mol Med Rep 6:429–433PubMedGoogle Scholar
  50. Maggi ME, Mangeaud A, Carpinella MC, Ferrayoli CG, Valladares GR, Palacios SM (2005) Laboratory evaluation of Artemisia annua L. extract and artemisinin activity against Epilachna paenulata and Spodoptera eridania. J Chem Ecol 31:1527–1536PubMedCrossRefGoogle Scholar
  51. Miller LH, Ackerman HC, Su X, Wellems TE (2013) Malaria biology and disease pathogenesis: insights for new treatments. Nat Med 19:156–167PubMedCrossRefGoogle Scholar
  52. Mishra LC, Bhattacharya A, Bhasin VK (2009) Phytochemical licochalcone A enhances antimalarial activity of artemisinin in vitro. Acta Trop 109:194–198PubMedCrossRefGoogle Scholar
  53. Mu D, Chen W, Yu B, Zhang C, Zhang Y, Qi H (2007) Calcium and survivin are involved in the in the induction of apoptosis by dihydroartemisinin in human lung cancer SPC-A-1 cells. Methods Find Exp Clin Pharmacol 29:33–38PubMedCrossRefGoogle Scholar
  54. Mustfa K, Landau I, Chabaud AG, Chavatte JM, Chandenier J, Duong TH, Richard-Lenoble D (2011) Effects of antimalarial drugs ferroquine and artesunate on Plasmodium yoelii gametocytogenesis and vectorial transmission. Sante 21:133–142PubMedGoogle Scholar
  55. Nam W, Tak J, Ryu JK, Jung M, Yook JL, Kim HJ, Cha IH (2007) Effects of artemisinin and its derivatives on growth inhibition and apoptosis of oral cancer cells. Head Neck 29:335–340PubMedCrossRefGoogle Scholar
  56. Newman DJ, Cragg GM (2012) Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod 75:311–335PubMedCrossRefGoogle Scholar
  57. Ni L, Acharya K, Hao X, Li S, Li Y, Li Y (2012a) Effects of artemisinin on photosystem II performance of Microcystis aeruginosa by in vivo chlorophyll fluorescence. Bull Environ Contam Toxicol 89:1165–1169PubMedCrossRefGoogle Scholar
  58. Ni L, Acharya K, Hao X, Li S (2012b) Isolation and identification of an anti-algal compound from Artemisia annua and mechanisms of inhibitory effect on algae. Chemosphere 88:1051–1057PubMedCrossRefGoogle Scholar
  59. Noedl M, Se Y, Schaecher K, Smith BL, Socheat D, Fukuda MM (2008) Evidence of artemisinin-resistant malaria in western Cambodia. N Engl J Med 359:2619–2620PubMedCrossRefGoogle Scholar
  60. Noori S, Naderi GA, Hassan ZM, Habibi Z, Bathaie SZ, Hashemi SMM (2004) Immunosuppressive activity of a molecule isolated from Artemisias annua on DTH responses compared with cyclosporine A. Int Immunopharmacol 4:1301–1306PubMedCrossRefGoogle Scholar
  61. Noori S, Hassan ZM, Rezai B, Rustaiyan A, Habibi Z, Fallahian F (2008) Artemisinin can inhibit the calmodulin-mediated activation of phosphodiesterase in comparison with cyclosporin A. Int Immunopharmacol 8:1744–1747PubMedCrossRefGoogle Scholar
  62. Ogutu B (2013) Artemether and lumefantrine for the treatment of uncomplicated Plasmodium falciparum malaria in sub-Saharan Africa. Expert Opin Pharmacother 14:643–654PubMedCrossRefGoogle Scholar
  63. Pareek A, Chandurkar N, Srivastav V, Lakhani J, Karmakar PS, Basu S, Ray A, Pednekar S, Gupta PB, Suthar N, Lakijani S (2013) Comparative evaluation of efficacy and safety of artesunate-lumefantrine vs. artemether–lumefantrine fixed-dose combination in the treatment of uncomplicated Plasmodium falciparum malaria. Trop Med Int Health 18:578–587PubMedCrossRefGoogle Scholar
  64. Price RN (2013) Potential of artemisinin-based combination therapies to block malaria transmission. J Infect Dis 207:1627–1629PubMedCrossRefGoogle Scholar
  65. Ren YR (2012) In vitro antitumor activities and mechanisms of galactosylated artemisinin. Zhong Yao Cai 35:1116–1120PubMedGoogle Scholar
  66. Ricci J, Kim M, Chung WY, Park KK, Jung M (2011) Discovery of artemisinin-glycolipid hybrids as an anti-oral cancer agents. Chem Pharm Bull 59:1471–1475PubMedCrossRefGoogle Scholar
  67. Romero MR, Serrano MA, Vallejo M, Efferth T, Alvarez M, Marin JJ (2006) Antiviral effect of artemisinin from Artemisia annua against a model member of the Flaviviridae family, the bovine viral diarrhoea virus (BVDV). Planta Med 72:1169–1174PubMedCrossRefGoogle Scholar
  68. Sarina S, Yagi Y, Nakano O, Hashimoto T, Kimura K, Asakawa Y, Zhong M, Narimatsu S, Gohda E (2013) Induction of neurite outgrowth in PC12 cells by artemisinin through activation of ERK and p38 MAPK signalling pathways. Brain Res 1490:61–71PubMedCrossRefGoogle Scholar
  69. Sen R, Ganguly S, Saha P, Chatterjee M (2010) Efficacy of artemisinin in experimental visceral leishmaniasis. Int J Antimicrob Agents 36:43–49PubMedCrossRefGoogle Scholar
  70. Sharma G, Kumar K, Sharma A, Agrawal V (2012) Bioassay of Artemisia annua leaf extracts and artemisinin against larvae of Culex quinquefasciatus and Culex tritaeniorhynchus. J Am Mosq Control Assoc 28:317–319PubMedCrossRefGoogle Scholar
  71. Sher A (2009) Antimicrobial activity of natural products from medicinal plants. Gomal J Med Sci 7:72–78Google Scholar
  72. Shi JQ, Zhang CC, Sun XL, Cheng XX, Wang JB, Zhang YD, Xu J, Zou HQ (2013) Antimalarial drug artemisinin extenuates amyloidogenesis and neuroinflammation in APPswe/PS1dE9 transgenic mice via inhibition of nuclear factor-κB and NLRP3 inflammasome activation. CNS Neurosci Ther 19:262–268PubMedCrossRefGoogle Scholar
  73. Sullivan DJJr (2013) Timing is everything for artemisinin action. Proc Natl Acad Sci USA 110:4866–4867PubMedCrossRefGoogle Scholar
  74. Tangnitipong S, Thaptimthong T, Srihirun S, Unchern S, Kittikool D, Udomsangpetch R, Sibmooh N (2012) Extracellular heme enhances the antimalarial activity of artemisinin. Biol Pharm Bull 35:29–33PubMedCrossRefGoogle Scholar
  75. Taylor S, Berridge V (2006) Medicinal plants and malaria: an historical case study of research at the London school of hygiene and tropical medicine in the twentieth century. Trans R Soc Trop Med Hyg 100:707–714PubMedCrossRefGoogle Scholar
  76. Thiengsusuk A, Chaijaroenkul W, Na-Bangchang K (2013) Antimalarial activities of medicinal plants and herbal formulations used in Thai traditional medicine. Parasitol Res 112:1475–1481PubMedCrossRefGoogle Scholar
  77. Thofner ICN, Liebhart D, Hess M, Schou TW, Hess C, Ivarsen E, Frette XC, Christensen LP, Grevsen K, Engber RM, Christensen JP (2012) Antihistomonal effects of artemisinin and Artemisia annua extracts in vitro could not be confirmed by in vivo experiments in turkeys and chickens. Avian Pathol 41:487–496PubMedCrossRefGoogle Scholar
  78. Tin AS, Sundar SN, Tran KQ, Park AH, Poindexter KM, Firestone GL (2012) Antiproliferative effects of artemisinin on human breast cancer cells requires the downregulated expression of the E2F1 transcription factor and loss of E2F1-target cell cycle genes. Anticancer Drugs 23:370–379PubMedCrossRefGoogle Scholar
  79. Wang Y, Fang BW, Peng LX (2012) Impact of artesunate on the expression and secretion of transforming growth factor-β1 of primary rat hepatic stellate cells. Zhonghua Gao Zang Bing Za Zhi 20:294–299Google Scholar
  80. Wells S, Diap G, Kiechel JR (2013) The story of artesunate-mefloquine (ASMQ), innovative partnerships in drug development: case study. Malar J 12:68–78PubMedCrossRefGoogle Scholar
  81. White NJ (2008) Qinghaosu (artemisinin): the price of success. Science 320:330–334PubMedCrossRefGoogle Scholar
  82. Willoughby JASr, Sundar SN, Cheung M, Tin AS, Modiano J, Firestone GL (2009) Artemisinin blocks prostate cancer growth and cell cycle progression by disrupting Sp1 interactions with the cyclin-dependent kinase-4 (CDK4) promoter and inhibiting CDK4 gene expression. J Biol Chem 284:2203–2213PubMedCrossRefGoogle Scholar
  83. Wongsrichanalai C (2013) Artemisinin resistance or artemisinin-based combination therapy resistance? Lancet Infect Dis 13:114–115PubMedCrossRefGoogle Scholar
  84. Wu B, Hu K, Li S, Zhu J, Gu L, Shen H, Hambly BD, Bao S, Di W (2012a) Dihydroartemisinin inhibits the growth and metastasis of epithelial ovarian cancer. Oncol Rep 27:101–108PubMedGoogle Scholar
  85. Wu XL, Sun WS, Shi XM, Wang Z, An P, Qiao CL (2012b) Effect of artemisinin on the expressions of GRα mRNA, GRβ mRNA and P300/CBP protein in lupus nephritis mice. Zhong Yao Cai 35:608–612PubMedGoogle Scholar
  86. Yang Z, Ding J, Yang C, Gao Y, Li X, Chen X, Peng Y, Fang J, Xiao S (2012) Immunomodulatory and anti-inflammatory properties of artesunate in experimental colitis. Curr Med Chem 19:4541–4551PubMedCrossRefGoogle Scholar
  87. Yao Q, Chen J, Lyu PH, Zhang SJ, Ma FC, Fang JG (2012) Knowledge map of artemisinin research in SCI and medline database. J Vector Borne Dis 49:205–216PubMedGoogle Scholar
  88. Zhang CZ, Zhang H, Yun J, Chen CG, Lai PB (2012) Dihydroartemisinin exhibits antitumor activity toward hepatocellular carcinoma in vitro and in vivo. Biochem Pharmacol 83:1278–1289PubMedCrossRefGoogle Scholar
  89. Zhang JL, Wang Z, Hu W, Chen SS, Lou XE, Zhou HJ (2013) DHA regulates angiogenesis and improves the efficiency of CDDP for the treatment of lung carcinoma. Microvasc Res 87:14–24PubMedCrossRefGoogle Scholar
  90. Zhao YG, Wang Y, Guo Z, Gu AD, Dan HC, Baldwin AS, Hao W, Wan YY (2012) Dihydroartemisinin ameliorates inflammatory disease by its reciprocal effects on Th and regulatory T cell function via modulating the mammalian target of rapamycin pathway. J Immunol 189:4417–4425PubMedCrossRefGoogle Scholar
  91. Zhou HJ, Wang WQ, Wu GD, Lee J, Li A (2007) Artesunate inhibits angiogenesis and downregulates vascular endothelial growth factor expression in chronic myeloid leukemia K562 cells. Vas Pharmacol 47:131–138CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • María José Abad Martínez
    • 1
  • Luis Miguel Bedoya del Olmo
    • 1
  • Luis Apaza Ticona
    • 1
  • Paulina Bermejo Benito
    • 1
  1. 1.Department of PharmacologyFaculty of Pharmacy, University ComplutenseMadridSpain

Personalised recommendations