Skip to main content

Learning Accurate Active Contours

  • Conference paper
Engineering Applications of Neural Networks (EANN 2013)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 383))

Abstract

Focus of research in Active contour models (ACM) area is mainly on development of various energy functions based on physical intuition. In this work, instead of designing a new energy function, we generate a multitude of contour candidates using various values of ACM parameters, assess their quality, and select the most suitable one for an object at hand. A random forest is trained to make contour quality assessments. We demonstrate experimentally superiority of the developed technique over three known algorithms in the P. minimum cells detection task solved via segmentation of phytoplankton images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kass, M., Witkin, A.P., Terzopoulos, D.: Snakes: Active contour models. International Journal of Computer Vision 1(4), 321–331 (1988)

    Article  Google Scholar 

  2. Chan, T., Vese, L.: Active contours without edges. IEEE Transactions Image Processing 10(2), 266–277 (2001)

    Article  MATH  Google Scholar 

  3. Bernard, O., Friboulet, D., Thevenaz, P., Unser, M.: Variational B-spline level-set: A linear filtering approach for fast deformable model evolution. IEEE Transactions on Image Processing 18(6), 1179–1191 (2009)

    Article  MathSciNet  Google Scholar 

  4. Shang, Y., Yang, X., Zhu, L., Deklerck, R., Nyssen, E.: Region competition based active contour for medical object extraction. Computerized Medical Imaging and Graphics 32(2), 109–117 (2008)

    Article  Google Scholar 

  5. Savelonas, M.A., Mylona, E.A., Maroulis, D.: Unsupervised 2D gel electrophoresis image segmentation based on active contours. Pattern Recognition 45(2), 720–731 (2012)

    Article  Google Scholar 

  6. Veronese, E., Stramare, R., Campion, A., Raffeiner, B., Beltrame, V., Scagliori, E., Coran, A., Ciprian, L., Fiocco, U., Grisan, E.: Improved detection of synovial boundaries in ultrasound examination by using a cascade of active-contours. Medical Engineering & Physics (2012), doi.org/10.1016/j.medengphy.2012.04.014

    Google Scholar 

  7. Chakraborty, A., Staib, L., Duncan, J.: Deformable boundary finding in medical images by integrating gradient and region information. IEEE Transactions Medical Imaging 15(6), 859–870 (1996)

    Article  Google Scholar 

  8. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. International Journal of Computer Vision 22(1), 61–79 (1997)

    Article  MATH  Google Scholar 

  9. Ronfard, R.: Region-based strategies for active contour models. International Journal of Computer Vision 13(2), 229–251 (1994)

    Article  Google Scholar 

  10. Tao, W., Tai, X.C.: Multiple piecewise constant with geodesic active contours (MPC-GAC) framework for interactive image segmentation using graph cut optimization. Image and Vision Computing 29, 499–508 (2011)

    Article  Google Scholar 

  11. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans Systems Man & Cybernetics 9(1), 62–66 (1979)

    Article  MathSciNet  Google Scholar 

  12. Verikas, A., Gelzinis, A., Bacauskiene, M.: Phase congruency-based detection of circular objects applied to analysis of phytoplankton images. Pattern Recognition 45(4), 1659–1670 (2012)

    Article  Google Scholar 

  13. Breiman, L.: Random forests. Machine Learning 45, 5–32 (2001)

    Article  MATH  Google Scholar 

  14. Shi, Y., Karl, W.C.: A real-time algorithm for the approximation of level-set-based curve evolution. IEEE Transactions on Image Processing 17(5), 645–656 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gelzinis, A., Verikas, A., Bacauskiene, M., Vaiciukynas, E. (2013). Learning Accurate Active Contours. In: Iliadis, L., Papadopoulos, H., Jayne, C. (eds) Engineering Applications of Neural Networks. EANN 2013. Communications in Computer and Information Science, vol 383. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41013-0_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41013-0_41

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41012-3

  • Online ISBN: 978-3-642-41013-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics