Skip to main content

Biogenic Inorganic Polysilicates (Biosilica): Formation and Biomedical Applications

  • Chapter
  • First Online:

Part of the book series: Progress in Molecular and Subcellular Biology ((PMSB,volume 54))

Abstract

The siliceous sponges, the demosponges and hexactinellid glass sponges, are unique in their ability to form biosilica structures with complex architectures through an enzyme-catalyzed mechanism. The biosilica skeleton of these sponges with its hierarchically structure and exceptional opto-mechanical properties has turned out to be an excellent model for the design of biomimetic nanomaterials with novel property combinations. In addition, biosilica shows morphogenetic activity that offers novel applications in the field of bone tissue engineering and repair. In recent years, much progress has been achieved towards the understanding of the principal enzymes, the silicateins that form the sponge skeletal elements, the spicules, and their self-assembling and structure-guiding properties. The discovery of the silicatein-interacting, scaffolding proteins provided new insights in the mechanism of spiculogenesis. The now available toolbox of enzymes and proteins that are involved in biosilica formation and the biosilica material synthesized by them are of great interest for a variety of applications from nanobiotechnology to nanomedicine.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adányi N, Németh E, Halász A, Szendro I, Váradi M (2006) Application of electrochemical optical waveguide lightmode spectroscopy for studying the effect of different stress factors on lactic acid bacteria. Anal Chim Acta 573–574:41–47

    PubMed  Google Scholar 

  • Adányi N, Bori Z, Szendrő I, Erdélyi K, Wang XH, Schröder HC, Müller WEG (2013a) Biosilica-based immobilization strategy for label-free OWLS sensors. Sens Actuators B Chem 177:1–7

    Google Scholar 

  • Adányi N, Bori Z, Szendrő I, Erdélyi K, Wang X, Schröder HC, Müller WEG (2013b) Bacterial sensors based on biosilica immobilization for label-free OWLS detection. N Biotechnol 30:493–499

    PubMed  Google Scholar 

  • Aizenberg J, Sundar V, Yablon AD, Weaver JC, Chen G (2004) Biological glass fibers: correlation between optical and structural properties. Proc Natl Acad Sci USA 101:3358–3363

    CAS  PubMed  Google Scholar 

  • Aizenberg J, Weaver JC, Thanawala MS, Sundar VC, Morse DE, Fratzl P (2005) Skeleton of Euplectella sp: structural hierarchy from the nanoscale to the macroscale. Science 309:275–278

    CAS  PubMed  Google Scholar 

  • Alexiou C, Arnold W, Klein RJ, Parak FG, Hulin P, Bergemann C, Erhardt W, Wagenpfeil S, Lübbe AS (2000) Locoregional cancer treatment with magnetic drug targeting. Cancer Res 60:6641–6648

    CAS  PubMed  Google Scholar 

  • André R, Tahir MN, Link T, Jochum FD, Kolb U, Theato P, Berger R, Wiens M, Schröder HC, Müller WEG, Tremel W (2011a) Growth of SiO2 and ZrO2 particles on TiO2 nanowires controlled by surface-bound silicatein and silintaphin-1. Chemical mimicry: hierarchical 1D TiO2@ZrO2 core-shell structures reminiscent of sponge spicules by the synergistic effect of silicatein-α and silintaphin-1. Langmuir 27:5464–5471

    PubMed  Google Scholar 

  • André R, Tahir MN, Schröder HC, Müller WEG, Tremel W (2011b) Enzymatic synthesis and surface deposition of tin dioxide using silicatein-α. Chem Mater 23:5358–5365

    Google Scholar 

  • André R, Tahir MN, Natalio F, Tremel W (2012) Bioinspired synthesis of multifunctional inorganic and bio-organic hybrid materials. FEBS J 279:1737–1749

    PubMed  Google Scholar 

  • André R, Natalio F, Tahir MN, Tremel W (2013) Self-cleaning antimicrobial surfaces by bio-enabled growth of SnO2 coatings on glass. Nanoscale 5:3447–3456

    PubMed  Google Scholar 

  • Aoba T (1996) Recent observations on enamel crystal formation during mammalian amelogenesis. Anat Rec 245:208–218

    CAS  PubMed  Google Scholar 

  • Aouacheria A, Geourjon C, Aghajari N, Navratil V, Deléage G, Lethias C, Exposito JY (2006) Insights into early extracellular matrix evolution: spongin short chain collagen-related proteins are homologous to basement membrane type IV collagens and form a novel family widely distributed in invertebrates. Mol Biol Evol 23:2288–2302

    CAS  PubMed  Google Scholar 

  • Armirotti A, Damonte G, Pozzolini M, Mussino F, Cerrano C, Salis A, Benatti U, Giovine M (2009) Primary structure and post-translational modifications of silicatein beta from the marine sponge Petrosia ficiformis (Poiret, 1789). J Proteome Res 8:3995–4004

    CAS  PubMed  Google Scholar 

  • Banerjee I, Pangule RC, Kane RS (2011) Antifouling coatings: recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms. Adv Mater 23:690–718

    CAS  PubMed  Google Scholar 

  • Bartlett JD, Ganss B, Goldberg M, Moradian-Oldak J, Paine ML, Snead ML, Wen X, White SN, Zhou YL (2006) Protein–protein interactions of the developing enamel matrix. Curr Top Dev Biol 74:57–115

    CAS  PubMed  Google Scholar 

  • Belikov SI, Kaluzhnaya OV, Schröder HC, Krasko A, Müller IM, Müller WEG (2005) Expression of silicatein in spicules from the Baikalian sponge Lubomirskia baicalensis. Cell Biol Int 29:943–951

    CAS  PubMed  Google Scholar 

  • Bernhardt A, Thieme S, Domaschke H, Springer A, Rösen-Wolff A, Gelinsky M (2010) Crosstalk of osteoblast and osteoclast precursors on mineralized collagen—towards an in vitro model for bone remodelling. J Biomed Mater Res A 95:848–856

    CAS  PubMed  Google Scholar 

  • Boyce BF, Xing L (2007) Biology of RANK, RANKL, and osteoprotegerin. Arthritis Res Ther 9(Suppl 1):S1

    PubMed Central  PubMed  Google Scholar 

  • Brinker CJ, Scherer GW (eds) (1990) Sol-gel science, the physics and chemistry of sol-gel processing. Academic, Boston, MA, pp 1–908

    Google Scholar 

  • Cattaneo-Vietti R, Bavestrello G, Cerrano C, Sara A, Benatti U, Giovine M, Gaino E (1996) Optical fibres in an Antarctic sponge. Nature 383:397–398

    CAS  Google Scholar 

  • Cha JN, Shimizu K, Zhou Y, Christianssen SC, Chmelka BF, Stucky GD, Morse DE (1999) Silicatein filaments and subunits from a marine sponge direct the polymerization of silica and silicones in vitro. Proc Natl Acad Sci USA 96:361–365

    CAS  PubMed  Google Scholar 

  • Chen Y, Bal BS, Gorski JP (1992) Calcium and collagen binding properties of osteopontin, bone sialoprotein, and bone acidic glycoprotein-75 from bone. J Biol Chem 267:24871–24878

    CAS  PubMed  Google Scholar 

  • Coradin T, Livage J (2007) Aqueous silicates in biological sol-gel applications: new perspectives for old precursors. Acc Chem Res 40:819–826

    CAS  PubMed  Google Scholar 

  • Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284:1318–1322

    CAS  PubMed  Google Scholar 

  • Croce G, Frache A, Milanesio M, Marchese L, Causà M, Viterbo D, Barbaglia A, Bolis V, Bavestrello G, Cerrano C, Benatti U, Pozzolini M, Giovine M, Amenitsch H (2004) Structural characterization of siliceous spicules from marine sponges. Biophys J 86:526–534

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dalsin JL, Messersmith PB (2005) Bioinspired antifouling polymers. Mater Today 8:38–46

    CAS  Google Scholar 

  • Darouiche RO (2001) Device-associated infections: a macroproblem that starts with microadherence. Clin Infect Dis 33:1567–1572

    CAS  PubMed  Google Scholar 

  • Ducy P, Desbois C, Boyce B, Pinero G, Story B, Dunstan C, Smith E, Bonadio J, Goldstein S, Gundberg C, Bradley A, Karsenty G (1996) Increased bone formation in osteocalcin-deficient mice. Nature 382:448–452

    CAS  PubMed  Google Scholar 

  • Epple M (2007) Biomimetic bone substitution materials. In: Epple M, Baeuerlein E (eds) Biomineralisation: medical and clinical aspects. Wiley-VCH, Weinheim, pp 81–95

    Google Scholar 

  • Fairhead M, Johnson KA, Kowatz T, Mcmahon SA, Carter LG, Oke M, Liu H, Naismith JH, Van Der Walle CF (2008) Crystal structure and silica condensing activities of silicatein alpha-cathepsin L chimeras. Chem Commun: 1765–1767

    Google Scholar 

  • Fincham AG, Moradian-Oldak J, Diekwisch TGH, Lyaruu DM, Wright JT, Bringas P, Slavkin HC (1995) Evidence for amelogenin “nanospheres” as functional components of secretory-stage enamel matrix. J Struct Biol 115:50–59

    CAS  PubMed  Google Scholar 

  • Fincham AG, Moradian-Oldak J, Simmer JP (1999) The structural biology of the developing dental enamel matrix. J Struct Biol 126:270–299

    CAS  PubMed  Google Scholar 

  • Flemming HC (2002) Biofouling in water systems—cases, causes and countermeasures. Appl Microbiol Biotechnol 59:629–640

    CAS  PubMed  Google Scholar 

  • Frey NA, Peng S, Cheng K, Sun S (2009) Magnetic nanoparticles: synthesis, functionalization, and applications in bioimaging and magnetic energy storage. Chem Soc Rev 38:2532–2542

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fujita T, Azuma Y, Fukuyama R, Hattori Y, Yoshida C, Koida M, Ogita K, Komori T (2004) Runx2 induces osteoblast and chondrocyte differentiation and enhances their migration by coupling with PI3K-Akt signalling. J Cell Biol 166:85–95

    CAS  PubMed  Google Scholar 

  • Fukumoto S, Kiba T, Hall B, Iehara N, Nakamura T, Longenecker G, Krebsbach PH, Nanci A, Kulkarni AB, Yamada Y (2004) Ameloblastin is a cell adhesion molecule required for maintaining the differentiation state of ameloblasts. J Cell Biol 167:973–983

    CAS  PubMed  Google Scholar 

  • Fukumoto S, Yamada A, Nonaka K, Yamada Y (2005) Essential roles of ameloblastin in maintaining ameloblast differentiation and enamel formation. Cells Tissues Organs 181:189–195

    CAS  PubMed  Google Scholar 

  • Garrone R (1978) Phylogenesis of connective tissue. Morphological aspects and biosynthesis of sponge intercellular matrix. S Karger, Basel

    Google Scholar 

  • Gazzerro E, Gangji V, Canalis E (1998) Bone morphogenetic proteins induce the expression of noggin, which limits their activity in cultured rat osteoblasts. J Clin Invest 102:2106–2114

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gref R, Minamitake Y, Peracchia MT, Trubetskoy V, Torchilin V, Langer R (1994) Biodegradable long-circulating polymeric nanospheres. Science 263:1600–1603

    CAS  PubMed  Google Scholar 

  • Gross J, Sokal Z, Rougvie M (1956) Structural and chemical studies on the connective tissue of marine sponges. J Histochem Cytochem 4:227–246

    CAS  PubMed  Google Scholar 

  • Gu H, Ho PL, Tsang KW, Wang L, Xu B (2003) Using biofunctional magnetic nanoparticles to capture vancomycin-resistant enterococci and other gram-positive bacteria at ultralow concentration. J Am Chem Soc 125:15702–15703

    CAS  PubMed  Google Scholar 

  • Gu H, Xu K, Xu C, Xu B (2006) Biofunctional magnetic nanoparticles for protein separation and pathogen detection. Chem Commun 2006:941–949

    Google Scholar 

  • Han P, Wu C, Xiao Y (2013) The effect of silicate ions on proliferation, osteogenic differentiation and cell signalling pathways (WNT and SHH) of bone marrow stromal cells. Biomater Sci 1:379–392

    CAS  Google Scholar 

  • Ishizeki K, Kagiya T, Fujiwara N, Otsu K, Harada H (2009) Expression of osteogenic proteins during the intrasplenic transplantation of Meckel’s chondrocytes: a histochemical and immunohistochemical study. Arch Histol Cytol 72:1–12

    CAS  PubMed  Google Scholar 

  • Jun YW, Lee JH, Cheon J (2008) Chemical design of nanoparticle probes for high-performance magnetic resonance imaging. Angew Chem Int Ed 47:5122–5135

    CAS  Google Scholar 

  • Kalajzic I, Kalajzic Z, Hurley MM, Lichtler AC, Rowe DW (2003) Stage specific inhibition of osteoblast lineage differentiation by FGF2 and noggin. J Cell Biochem 88:1168–1176

    CAS  PubMed  Google Scholar 

  • Kaluzhnaya OV, Belikov SI, Schröder HC, Wiens M, Giovine M, Krasko A, Müller IM, Müller WEG (2005) Dynamics of skeleton formation in the Lake Baikal sponge Lubomirskia baicalensis. Part II. Molecular biological studies. Naturwissenschaften 92:134–138

    CAS  PubMed  Google Scholar 

  • Karadag A, Fisher LW (2006) Bone sialoprotein enhances migration of bone marrow stromal cells through matrices by bridging MMP-2 to αvβ3-integrin. J Bone Miner Res 21:1627–1636

    CAS  PubMed  Google Scholar 

  • Karsenty G, Ferron M (2012) The contribution of bone to whole-organism physiology. Nature 481:314–320

    CAS  PubMed  Google Scholar 

  • Kim J, Park S, Lee JE, Jin SM, Lee JH, Lee IS, Yang I, Kim JS, Kim SK, Cho MH, Hyeon T (2006) Designed fabrication of multifunctional magnetic gold nanoshells and their application to magnetic resonance imaging and photothermal therapy. Angew Chem Int Ed 45:7754–7758

    CAS  Google Scholar 

  • Krasko A, Gamulin V, Seack J, Steffen R, Schröder HC, Müller WEG (1997) Cathepsin, a major protease of the marine sponge Geodia cydonium: purification of the enzyme and molecular cloning of cDNA. Mol Mar Biol Biotechnol 6:296–307

    CAS  PubMed  Google Scholar 

  • Krasko A, Lorenz B, Batel R, Schröder HC, Müller IM, Müller WEG (2000) Expression of silicatein and collagen genes in the marine sponge Suberites domuncula is controlled by silicate and myotrophin. Eur J Biochem 267:4878–4887

    CAS  PubMed  Google Scholar 

  • Kruse M, Müller IM, Müller WEG (1997) Early evolution of metazoan serine/threonine and tyrosine kinases: identification of selected kinases in marine sponges. Mol Biol Evol 14:1326–1334

    CAS  PubMed  Google Scholar 

  • Kruse M, Leys SP, Müller IM, Müller WEG (1998) Phylogenetic position of the hexactinellida within the phylum Porifera based on the amino acid sequence of the protein kinase C from Rhabdocalyptus dawsoni. J Mol Evol 46:721–728

    CAS  PubMed  Google Scholar 

  • Kumar CG, Anand SK (1998) Significance of microbial biofilms in food industry: a review. Int J Food Microbiol 42:9–27

    CAS  PubMed  Google Scholar 

  • Lemmon MA, Ferguson KM (2000) Signal-dependent membrane targeting by pleckstrin homology (PH) domains. Biochem J 350:1–18

    CAS  PubMed  Google Scholar 

  • Link T, Wang XH, Schloßmacher U, Feng QL, Schröder HC, Müller WEG (2013) An approach to a biomimetic bone scaffold: increased expression of BMP-2 and of osteoprotegerin in SaOS-2 cells grown onto silica-biologized 3D printed scaffolds. RSC Adv 3:11140–11147

    CAS  Google Scholar 

  • Liong M, Lu J, Kovochich M, Xia T, Ruehm SG, Nel AE, Tamanoi F, Zink JI (2008) Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. ACS Nano 2:889–896

    CAS  PubMed Central  PubMed  Google Scholar 

  • Masuya H, Shimizu K, Sezutsu H, Sakuraba Y, Nagano J, Shimizu A, Fujimoto N, Kawai A, Miura I, Kaneda H, Kobayashi K, Ishijima J, Maeda T, Gondo Y, Noda T, Wakana S, Shiroishi T (2005) Enamelin (Enam) is essential for amelogenesis: ENU-induced mouse mutants as models for different clinical subtypes of human amelogenesis imperfecta (AI). Hum Mol Genet 14:575–583

    CAS  PubMed  Google Scholar 

  • Mayer G (2005) Rigid biological systems as models for synthetic composites. Science 310:1144–1147

    CAS  PubMed  Google Scholar 

  • Miserez A, Weaver JC, Thurner PJ, Aizenberg J, Dauphin Y, Fratzl P, Morse DE, Zok FW (2008) Effects of laminate architecture on fracture resistance of sponge biosilica: lessons from nature. Adv Funct Mater 18:1241–1248

    CAS  Google Scholar 

  • Moghimi SM, Hunter AC, Murray JC (2001) Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev 53:283–318

    CAS  PubMed  Google Scholar 

  • Morse DE (1999) Silicon biotechnology: harnessing biological silica production to construct new materials. Trends Biotechnol 17:230–232

    CAS  Google Scholar 

  • Müller WEG, Krasko A, Le Pennec G, Schröder HC (2003) Biochemistry and cell biology of silica formation in sponges. Microsc Res Tech 62:368–377

    PubMed  Google Scholar 

  • Müller WEG, Rothenberger M, Boreiko A, Tremel W, Reiber A, Schröder HC (2005) Formation of siliceous spicules in the marine demosponge Suberites domuncula. Cell Tissue Res 321:285–297

    PubMed  Google Scholar 

  • Müller WEG, Belikov SI, Tremel W, Perry CC, Gieskes WWC, Boreiko A, Schröder HC (2006a) Siliceous spicules in marine demosponges (example Suberites domuncula). Micron 37:107–120

    PubMed  Google Scholar 

  • Müller WEG, Kaluzhnaya OV, Belikov SI, Rothenberger M, Schröder HC, Reiber A, Kaandorp JA, Manz B, Mietchen D, Volke F (2006b) Magnetic resonance imaging of the siliceous skeleton of the demosponge Lubomirskia baicalensis. J Struct Biol 153:31–41

    PubMed  Google Scholar 

  • Müller WEG, Wendt K, Geppert C, Wiens M, Reiber A, Schröder HC (2006c) Novel photoreception system in sponges? unique transmission properties of the stalk spicules from the hexactinellid Hyalonema sieboldi. Biosens Bioelectron 21:1149–1155

    PubMed  Google Scholar 

  • Müller WEG, Boreiko A, Schloßmacher U, Wang XH, Tahir MN, Tremel W, Brandt D, Kaandorp JA, Schröder HC (2007a) Fractal-related assembly of the axial filament in the demosponge Suberites domuncula. Biomaterials 28:4501–4511

    PubMed  Google Scholar 

  • Müller WEG, Boreiko A, Wang X, Belikov SI, Wiens M, Grebenjuk VA, Schloßmacher U, Schröder HC (2007b) Silicateins, the major biosilica forming enzymes present in demosponges: protein analysis and phylogenetic relationship. Gene 395:62–71

    PubMed  Google Scholar 

  • Müller WEG, Boreiko A, Wang X, Krasko A, Geurtsen W, Custódio MR, Winkler T, Lukić-Bilela L, Link T, Schröder HC (2007c) Morphogenetic activity of silica and bio-silica on the expression of genes controlling biomineralization using SaOS-2 cells. Calcif Tissue Int 81:382–393

    PubMed  Google Scholar 

  • Müller WEG, Eckert C, Kropf K, Wang X, Schloßmacher U, Seckert C, Wolf SE, Tremel W, Schröder HC (2007d) Formation of giant spicules in the deep-sea hexactinellid Monorhaphis chuni (Schulze 1904): electron-microscopic and biochemical studies. Cell Tissue Res 329:363–378

    PubMed  Google Scholar 

  • Müller WEG, Li J, Schröder HC, Qiao L, Wang X (2007e) The unique skeleton of siliceous sponges (Porifera; Hexactinellida and Demospongiae) that evolved first from the Urmetazoa during the Proterozoic: a review. Biogeosciences 4:219–232

    Google Scholar 

  • Müller WEG, Schloßmacher U, Eckert C, Krasko A, Boreiko A, Ushijima H, Wolf SE, Tremel W, Müller IM, Schröder HC (2007f) Analysis of the axial filament in spicules of the demosponge Geodia cydonium: Different silicatein composition in microscleres (asters) and megascleres (oxeas and triaenes). Eur J Cell Biol 86:473–487

    PubMed  Google Scholar 

  • Müller WEG, Wang X, Belikov SI, Tremel W, Schloßmacher U, Natoli A, Brandt D, Boreiko A, Tahir MN, Müller IM, Schröder HC (2007g) Formation of siliceous spicules in demosponges: example Suberites domuncula. In: Bäuerlein E (ed) Handbook of Biomineralization, vol 1, Biological aspects and structure formation. Wiley-VCH, Weinheim, pp 59–82

    Google Scholar 

  • Müller WEG, Boreiko A, Schloßmacher U, Wang X, Eckert C, Kropf K, Li J, Schröder HC (2008a) Identification of a silicatein(-related) protease in the giant spicules of the deep sea hexactinellid Monorhaphis chuni. J Exp Biol 211:300–309

    PubMed  Google Scholar 

  • Müller WEG, Engel S, Wang X, Wolf SE, Tremel W, Thakur NL, Krasko A, Divekar M, Schröder HC (2008b) Bioencapsulation of living bacteria (Escherichia coli) with poly(silicate) after transformation with silicatein-α gene. Biomaterials 29:771–779

    PubMed  Google Scholar 

  • Müller WEG, Jochum K, Stoll B, Wang XH (2008c) Formation of giant spicule from quartz glass by the deep sea sponge Monorhaphis. Chem Mater 20:4703–4711

    Google Scholar 

  • Müller WEG, Schloßmacher U, Wang XH, Boreiko A, Brandt D, Wolf SE, Tremel W, Schröder HC (2008d) Poly(silicate)-metabolizing silicatein in siliceous spicules and silicasomes of demosponges comprises dual enzymatic activities (silica-polymerase and silica-esterase). FEBS J 275:362–370

    PubMed  Google Scholar 

  • Müller WEG, Wang XH, Kropf K, Boreiko A, Schloßmacher U, Brandt D, Schröder HC, Wiens M (2008e) Silicatein expression in the hexactinellid Crateromorpha meyeri: the lead marker gene restricted to siliceous sponges. Cell Tissue Res 333:339–351

    PubMed  Google Scholar 

  • Müller WEG, Wang XH, Kropf K, Ushijima H, Geurtsen W, Eckert C, Tahir MN, Tremel W, Boreiko A, Schloßmacher U, Li J, Schröder HC (2008f) Bioorganic/inorganic hybrid composition of sponge spicules. J Struct Biol 161:188–203

    PubMed  Google Scholar 

  • Müller WEG, Kasueske M, Wang XH, Schröder HC, Wang Y, Pisignano D, Wiens M (2009a) Luciferase a light source for the silica-based optical waveguides (spicules) in the demosponge Suberites domuncula. Cell Mol Life Sci 66:537–552

    PubMed  Google Scholar 

  • Müller WEG, Wang X, Burghard Z, Bill J, Krasko A, Boreiko A, Schloßmacher U, Schröder HC, Wiens M (2009b) Bio-sintering processes in hexactinellid sponges: fusion of biosilica in giant basal spicules from Monorhaphis chuni. J Struct Biol 168:548–561

    PubMed  Google Scholar 

  • Müller WEG, Wang X, Cui FZ, Jochum KP, Tremel W, Bill J, Schröder HC, Natalio F, Schloßmacher U, Wiens M (2009c) Sponge spicules as blueprints for the biofabrication of inorganic-organic composites and biomaterials. Appl Microbiol Biotechnol 83:397–413

    PubMed Central  PubMed  Google Scholar 

  • Müller WEG, Wang XH, Schröder HC, Korzhev M, Grebenyuk V, Markl J, Jochum KP, Pisignano D, Wiens M (2010a) A cryptochrome-based photosensory system in the siliceous sponge Suberites domuncula (Demospongiae). FEBS J 277:1182–1201

    PubMed  Google Scholar 

  • Müller WEG, Wang X, Sinha B, Wiens M, Schröder HC, Jochum KP (2010b) NanoSIMS: insights into the organization of the proteinaceous scaffold within hexactinellid sponge spicules. Chembiochem 11:1077–1082

    PubMed  Google Scholar 

  • Müller WEG, Binder M, von Lintig J, Guo YW, Wang XH, Kaandorp JA, Wiens M, Schröder HC (2011a) Interaction of the retinoic acid signaling pathway with spicule formation in the marine sponge Suberites domuncula through activation of bone morphogenetic protein-1. Biochim Biophys Acta 1810:1178–1194

    PubMed  Google Scholar 

  • Müller WEG, Wang XH, Diehl-Seifert B, Kropf K, Schloßmacher U, Lieberwirth I, Glasser G, Wiens M, Schröder HC (2011b) Inorganic polymeric phosphate/polyphosphate as an inducer of alkaline phosphatase and a modulator of intracellular Ca2+ level in osteoblasts (SaOS-2 cells) in vitro. Acta Biomater 7:2661–2671

    PubMed  Google Scholar 

  • Müller WEG, Wang XH, Wiens M, Schloßmacher U, Jochum KP, Schröder HC (2011c) Hardening of biosilica in sponge spicules involves an aging process after its enzymatic polycondensation: evidence for an aquaporin-mediated water absorption. Biochim Biophys Acta 1810:713–726

    PubMed  Google Scholar 

  • Müller WEG, Wang XH, Grebenjuk VA, Korzhev M, Wiens M, Schloßmacher U, Schröder HC (2012) Nocturnin in the demosponge Suberites domuncula: a potential circadian clock protein controlling glycogenin synthesis in sponges. Biochem J 448:233–242

    PubMed  Google Scholar 

  • Müller WEG, Mugnaioli E, Schröder HC, Schloßmacher U, Giovine M, Kolb U, Wang XH (2013a) Hierarchical composition of the axial filament from spicules of the siliceous sponge Suberites domuncula: from biosilica-synthesizing nanofibrils to structure- and morphology-guiding triangular stems. Cell Tissue Res 351:49–58

    PubMed  Google Scholar 

  • Müller WEG, Schröder HC, Burghard Z, Pisignano D, Wang XH (2013b) Silicateins: a paradigm shift in bioinorganic chemistry. enzymatic synthesis of inorganic polymeric silica. Chem Eur J 19:5790–5804

    PubMed  Google Scholar 

  • Müller WEG, Schröder HC, Feng QL, Schlossmacher U, Link T, Wang XH (2013c) Development of a morphogenetically active scaffold for three-dimensional growth of bone cells: biosilica-alginate hydrogel for SaOS-2 cell cultivation. J Tissue Eng Regen Med, doi:10.1002/term.1745

  • Müller WEG, Schröder HC, Muth S, Gietzen S, Korzhev M, Grebenjuk V, Wiens M, Schloßmacher U, Wang XH (2013d) The silicatein-propeptide acts as inhibitor/modulator of self-organization during spicule axial filament formation. FEBS J 280:1693–1708

    PubMed  Google Scholar 

  • Müller WEG, Wang XH, Grebenjuk V, Diehl-Seifert B, Steffen R, Schloßmacher U, Trautwein A, Neumann S, Schröder HC (2013e) Silica as a morphogenetically active inorganic polymer. Biomater Sci 1:669–678

    Google Scholar 

  • Müller WEG, Wang XH, Jochum K, Schröder HC (2013f) Self-healing, an intrinsic property of biomineralization processes. IUBMB Life 65:382–396

    PubMed  Google Scholar 

  • Müller WEG, Wang XH, Proksch P, Perry CC, Osinga R, Garderes J, Schröder HC (2013g) Principles of biofouling protection in marine sponges. Design of novel biomimetic and bioinspired coatings in the marine environment? Mar Biotechnol 15:375–398

    PubMed  Google Scholar 

  • Murr MM, Morse DE (2005) Fractal intermediates in the self-assembly of silicatein filaments. Proc Natl Acad Sci USA 102:11657–11662

    CAS  PubMed  Google Scholar 

  • Na HB, Lee JH, An K, Park YI, Park M, Lee IS, Nam DH, Kim ST, Kim SH, Kim SW, Lim KH, Kim KS, Kim SO, Hyeon T (2007) Development of a T1 contrast agent for magnetic resonance imaging using MnO nanoparticles. Angew Chem Int Ed 46:5397–5401

    CAS  Google Scholar 

  • Natalio F, Link T, Müller WEG, Schröder HC, Cui FZ, Wang XH, Wiens M (2010a) Bioengineering of the silica-polymerizing enzyme silicatein-α for a targeted application to hydroxyapatite. Acta Biomater 6:3720–3728

    CAS  PubMed  Google Scholar 

  • Natalio F, Mugnaioli E, Wiens M, Wang X, Schröder HC, Tahir MN, Tremel W, Kolb U, Müller WEG (2010b) Silicatein-mediated incorporation of titanium into spicules from the demosponge Suberites domuncula. Cell Tissue Res 339:429–436

    PubMed  Google Scholar 

  • Natalio F, Coralles T, Panthöfer M, Lieberwirth I, Schollmeyer D, Müller WEG, Kappl M, Butt HJ, Tremel W (2013) Flexible minerals: self-assembled calcite spicules with extreme bending strength. Science 339:1298–1302

    CAS  PubMed  Google Scholar 

  • Nelson CA, Warren JT, Wang MW, Teitelbaum SL, Fremont DH (2012) RANKL employs distinct binding modes to engage RANK and the osteoprotegerin decoy receptor. Structure 20:1971–1982

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nickel J, Dreyer MK, Kirsch T, Sebald W (2001) The crystal structure of the BMP-2–BMPR-IA complex and the generation of BMP-2 antagonists. J Bone Joint Surg Am 83-A(Suppl 1):S7–S14

    PubMed  Google Scholar 

  • Niyibizi C, Eyre DR (1994) Structural characteristics of cross-linking sites in type V collagen of bone. Chain specificities and heterotypic links to type I collagen. Eur J Biochem 224:943–950

    CAS  PubMed  Google Scholar 

  • Novatchkova M, Schneider G, Fritz R, Eisenhaber F, Schleiffer A (2006) DOUTfinder—identification of distant domain outliers using subsignificant sequence similarity. Nucleic Acids Res 34:W214–W218

    CAS  PubMed Central  PubMed  Google Scholar 

  • Owens DE, Peppas NA (2006) Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm 307:93–102

    CAS  PubMed  Google Scholar 

  • Pagliara S, Polini A, Camposeo A, Schröder HC, Müller WEG, Pisignano D (2012) Electrical properties of in vitro biomineralized recombinant silicatein deposited by microfluidics. Appl Phys Lett 101:193702

    Google Scholar 

  • Park H, Yang J, Seo S, Kim K, Suh J, Kim D, Haam S, Yoo KH (2008) Multifunctional nanoparticles for photothermally controlled drug delivery and magnetic resonance imaging enhancement. Small 4:192–196

    CAS  PubMed  Google Scholar 

  • Parsek MR, Singh PK (2003) Bacterial biofilms: an emerging link to disease pathogenesis. Annu Rev Microbiol 57:677–701

    CAS  PubMed  Google Scholar 

  • Perović-Ottstadt S, Wiens M, Schröder HC, Batel R, Giovine M, Krasko A, Müller IM, Müller WEG (2005) Arginine kinase in the demosponge Suberites domuncula: regulation of its expression and catalytic activity by silicic acid. J Exp Biol 208:637–646

    PubMed  Google Scholar 

  • Polini A, Pagliara S, Camposeo A, Biasco A, Schröder HC, Müller WEG, Pisignano D (2011) Biosilica electrically-insulating layers by soft lithography-assisted biomineralisation with recombinant silicatein. Adv Mater 23:4674–4678

    CAS  PubMed  Google Scholar 

  • Polini A, Pagliara S, Camposeo A, Cingolani R, Wang XH, Schröder HC, Müller WEG, Pisignano D (2012) Optical properties of in-vitro biomineralised silica. Sci Rep 2:607

    PubMed Central  PubMed  Google Scholar 

  • Prencipe G, Tabakman SM, Welsher K, Liu Z, Goodwin AP, Zhang L, Henry J, Dai H (2009) PEG branched polymer for functionalization of nanomaterials with ultralong blood circulation. J Am Chem Soc 131:4783–4787

    CAS  PubMed Central  PubMed  Google Scholar 

  • Price PA, Toroian D, Chan WS (2009) Tissue-nonspecific alkaline phosphatase is required for the calcification of collagen in serum: a possible mechanism for biomineralization. J Biol Chem 284:4594–4604

    CAS  PubMed  Google Scholar 

  • Ramsden JJ (1999) OWLS: a versatile technique for sensing with bioarrays. Chimia 53:67–71

    CAS  Google Scholar 

  • Schladt TD, Schneider K, Shukoor MI, Natalio F, Tahir MN, Weber S, Schreiber LM, Schröder HC, Müller WEG, Tremel W (2010a) Highly soluble multifunctional MnO nanoparticles for simultaneous optical and MRI imaging and cancer treatment using photodynamic therapy. J Mater Chem 20:8297–8304

    CAS  Google Scholar 

  • Schladt TD, Shukoor MI, Schneider K, Tahir MN, Natalio F, Ament I, Becker J, Jochum FD, Weber S, Köhler O, Theato P, Schreiber LM, Sönnichsen C, Schröder HC, Müller WEG, Tremel W (2010b) Au@MnO nanoflowers: hybrid nanocomposites for selective dual functionalization and imaging. Angew Chem Int Ed 49:3976–3980

    CAS  Google Scholar 

  • Schloßmacher U, Wiens M, Schröder HC, Wang XH, Jochum KP, Müller WEG (2011) Silintaphin-1: interaction with silicatein during structure-guiding biosilica formation. FEBS J 278:1145–1155

    PubMed  Google Scholar 

  • Schloßmacher U, Schröder HC, Wang XH, Feng QL, Diehl-Seifert B, Neumann S, Trautwein A, Müller WEG (2013) Alginate/silica composite hydrogel as a potential morphogenetically active scaffold for three-dimensional tissue engineering. RSC Adv 3:11185–11194

    Google Scholar 

  • Schröder HC, Zahn RK, Dose K, Müller WEG (1980) Purification and characterization of a poly(A)-specific exoribonuclease from calf thymus. J Biol Chem 255:4535–4538

    PubMed  Google Scholar 

  • Schröder HC, Perović-Ottstadt S, Rothenberger M, Wiens M, Schwertner H, Batel R, Korzhev M, Müller IM, Müller WEG (2004) Silica transport in the demosponge Suberites domuncula: fluorescence emission analysis using the PDMPO probe and cloning of a potential transporter. Biochem J 381:665–673

    PubMed  Google Scholar 

  • Schröder HC, Boreiko O, Krasko A, Reiber A, Schwertner H, Müller WEG (2005a) Mineralisation of SaOS-2 cells on enzymatically (silicatein) modified bioactive osteoblast-stimulating surfaces. J Biomed Mater Res Part B Appl Biomater 75B:387–392

    Google Scholar 

  • Schröder HC, Perović-Ottstadt S, Grebenjuk VA, Engel S, Müller IM, Müller WEG (2005b) Biosilica formation in spicules of the sponge Suberites domuncula: synchronous expression of a gene cluster. Genomics 85:666–678

    PubMed  Google Scholar 

  • Schröder HC, Boreiko A, Korzhev M, Tahir MN, Tremel W, Eckert C, Ushijima H, Müller IM, Müller WEG (2006) Co-expression and functional interaction of silicatein with galectin: matrix-guided formation of siliceous spicules in Suberites domuncula. J Biol Chem 281:12001–12009

    PubMed  Google Scholar 

  • Schröder HC, Brandt D, Schloßmacher U, Wang X, Tahir MN, Tremel W, Belikov SI, Müller WEG (2007a) Enzymatic production of biosilica glass using enzymes from sponges: basic aspects and application in nanobiotechnology (material sciences and medicine). Naturwissenschaften 94:339–359

    PubMed  Google Scholar 

  • Schröder HC, Natalio F, Shukoor I, Tremel W, Schloßmacher U, Wang XH, Müller WEG (2007b) Apposition of silica lamellae during growth of spicules in the demosponge Suberites domuncula: biological/biochemical studies and chemical/biomimetical confirmation. J Struct Biol 159:325–334

    PubMed  Google Scholar 

  • Schröder HC, Wang XH, Tremel W, Ushijima H, Müller WEG (2008) Biofabrication of biosilica-glass by living organisms. Nat Prod Rep 25:455–474

    PubMed  Google Scholar 

  • Schröder HC, Wiens M, Wang X, Schloßmacher U, Müller WEG (2011) Biosilica-based strategies for treatment of osteoporosis and other bone diseases. Prog Mol Subcell Biol 52:283–312

    PubMed  Google Scholar 

  • Schröder HC, Wang XH, Manfrin A, Yu SH, Grebenjuk VA, Korzhev M, Wiens M, Schloßmacher U, Müller WEG (2012a) Silicatein: acquisition of structure-guiding and structure-forming properties during maturation from the pro-silicatein to the silicatein form. J Biol Chem 287:22196–22205

    PubMed  Google Scholar 

  • Schröder HC, Wang XH, Wiens M, Diehl-Seifert B, Kropf K, Schloßmacher U, Müller WEG (2012b) Silicate modulates the cross-talk between osteoblasts (SaOS-2) and osteoclasts (RAW 264.7 cells): inhibition of osteoclast growth and differentiation. J Cell Biochem 113:3197–3206

    PubMed  Google Scholar 

  • Schröder HC, Wiens M, Schloßmacher U, Brandt D, Müller WEG (2012c) Silicatein-mediated polycondensation of orthosilicic acid: modeling of catalytic mechanism involving ring formation. Silicon 4:33–38

    Google Scholar 

  • Schultz MP (2007) Effects of coating roughness and biofouling on ship resistance and powering. Biofouling 23:331–341

    PubMed  Google Scholar 

  • Shimizu K, Cha J, Stucky GD, Morse DE (1998) Silicatein alpha: cathepsin L-like protein in sponge biosilica. Proc Natl Acad Sci USA 95:6234–6238

    CAS  PubMed  Google Scholar 

  • Shukoor MI, Natalio F, Ksenofontov V, Tahir MN, Eberhardt M, Theato P, Schröder HC, Müller WEG, Tremel W (2007a) Double-stranded RNA polyinosinic-polycytidylic acid immobilized onto γ-Fe2O3 nanoparticles by using a multifunctional polymeric linker. Small 3:1374–1378

    CAS  PubMed  Google Scholar 

  • Shukoor MI, Natalio F, Tahir MN, Ksenofontov V, Therese HA, Theato P, Schröder HC, Müller WEG, Tremel W (2007b) Superparamagnetic γ-Fe2O3 nanoparticles with tailored functionality for protein separation. Chem Commun 2007:4677–4679

    Google Scholar 

  • Shukoor MI, Natalio F, Metz N, Glube N, Tahir MN, Therese HA, Ksenofontov V, Theato P, Langguth P, Boissel JP, Schröder HC, Müller WEG, Tremel W (2008a) dsRNA functionalized multifunctional γ-Fe2O3 nanocrystals: a tool for targeting cell surface receptors. Angew Chem Int Ed 47:4748–4752

    CAS  Google Scholar 

  • Shukoor MI, Natalio F, Tahir MN, Divekar M, Metz N, Therese HA, Theato P, Ksenofontov V, Schröder HC, Müller WEG, Tremel W (2008b) Multifunctional polymer-derivatized γ-Fe2O3 nanocrystals as a methodology for the biomagnetic separation of recombinant His-tagged proteins. J Magn Magn Mater 320:2339–2344

    CAS  Google Scholar 

  • Shukoor MI, Natalio F, Therese HA, Tahir MN, Ksenofontov V, Panthöfer M, Eberhardt M, Theato P, Schröder HC, Müller WEG, Tremel W (2008c) Fabrication of a silica coating on magnetic γ-Fe2O3 nanoparticles by an immobilized enzyme. Chem Mater 20:3567–3573

    CAS  Google Scholar 

  • Silva-Correia J, Miranda-Gonçalves V, Salgado AJ, Sousa N, Oliveira JM, Reis RM, Reis RL (2012) Angiogenic potential of gellan gum-based hydrogels for application in nucleus pulposus regeneration: in vivo study. Tissue Eng Part A 18:1203–1212

    CAS  PubMed  Google Scholar 

  • Sodek J, Ganss B, McKee MD (2000) Osteopontin. Crit Rev Oral Biol Med 11:279–303

    CAS  PubMed  Google Scholar 

  • Sun EY, Josephson L, Kelly KA, Weissleder R (2006) Development of nanoparticle libraries for biosensing. Bioconjug Chem 17:109–113

    PubMed  Google Scholar 

  • Tahir MN, Théato P, Müller WEG, Schröder HC, Janshoff A, Zhang J, Huth J, Tremel W (2004) Monitoring the formation of biosilica catalysed by histidin-tagged silicatein. Chem Commun 2004:2848–2849

    Google Scholar 

  • Tahir MN, Théato P, Müller WEG, Schröder HC, Borejko A, Faiß S, Janshoff A, Huth J, Tremel W (2005) Formation of layered titania and zirconia catalysed by surface-bound silicatein. Chem Commun 28:5533–5535

    Google Scholar 

  • Tahir MN, Eberhardt M, Theato P, Faiss S, Janshoff A, Gorelik T, Kolb U, Tremel W (2006a) Reactive polymers: a versatile toolbox for the immobilization of functional molecules on TiO2 nanoparticles. Angew Chem Int Ed 45:908–912

    CAS  Google Scholar 

  • Tahir MN, Eberhardt M, Therese HA, Kolb U, Theato P, Müller WEG, Schröder HC, Tremel W (2006b) From single molecules to nanoscopically structured functional materials: Au nanocrystal growth on TiO2 nanowires controlled by surface bound silicatein. Angew Chem Int Ed 45:4803–4809

    CAS  Google Scholar 

  • Tahir MN, Natalio F, Therese HA, Yella A, Metz N, Shah MR, Mugnaioli E, Berger R, Theato P, Schröder HC, Müller WEG, Tremel W (2009) Enzyme-mediated deposition of a TiO2 coating onto biofunctionalized WS2 chalcogenide nanotubes. Adv Funct Mater 19:285–291

    CAS  Google Scholar 

  • Tahir MN, Ali M, Andre R, Müller WEG, Schröder HC, Tremel W, Ensinger W (2013) Silicatein conjugation inside nanoconfined geometries through immobilized NTA–Ni(II) chelates. Chem Commun 49:2210–2212

    CAS  Google Scholar 

  • Takagi M, Kamiya N, Takahashi T, Ito S, Hasegawa M, Suzuki N, Nakanishi K (2004) Effects of bone morphogenetic protein-2 and transforming growth factor beta1 on gene expression of transcription factors, AJ18 and Runx2 in cultured osteoblastic cells. J Mol Histol 35:81–90

    CAS  PubMed  Google Scholar 

  • Termine JD, Kleinman HK, Whitson SW, Conn KM, McGarvey ML, Martin GR (1981) Osteonectin, a bone-specific protein linking mineral to collagen. Cell 26:99–105

    CAS  PubMed  Google Scholar 

  • Torchilin VP (2006) Multifunctional nanocarriers. Adv Drug Deliv Rev 58:1532–1555

    CAS  PubMed  Google Scholar 

  • Uchida T, Murakami C, Wakida K, Dohi N, Iwai Y, Simmer JP, Fukae M, Satado T, Takahashi O (1998) Sheet proteins: synthesis, secretion, degradation and fate in forming enamel. Eur J Oral Sci 106:308–314

    CAS  PubMed  Google Scholar 

  • Viguet-Carrin S, Garnero P, Delmas PD (2006) The role of collagen in bone strength. Osteoporos Int 17:319–336

    CAS  PubMed  Google Scholar 

  • Wang XH, Boreiko A, Schloßmacher U, Brandt D, Schröder HC, Li J, Kaandorp JA, Götz H, Duschner H, Müller WEG (2008) Axial growth of hexactinellid spicules: formation of cone-like structural units in the giant basal spicules of the hexactinellid Monorhaphis. J Struct Biol 164:270–280

    PubMed  Google Scholar 

  • Wang XH, Schröder HC, Müller WEG (2009a) Giant siliceous spicules from the deep-sea glass sponge Monorhaphis chuni: morphology, biochemistry and molecular biology. Int Rev Cell Mol Biol 273:69–115

    CAS  PubMed  Google Scholar 

  • Wang X, Zhang X, Schröder HC, Müller WEG (2009b) Giant basal spicule from the deep-sea glass sponge Monorhaphis chuni: synthesis of the largest bio-silica structure on earth by silicatein. Front Mater Sci China 3:226–240

    Google Scholar 

  • Wang X, Wiens M, Schröder HC, Hu S, Mugnaioli E, Kolb U, Tremel W, Pisignano D, Müller WEG (2010) Morphology of sponge spicules: silicatein a structural protein for bio-silica formation. Adv Eng Mater 12:B422–B437

    Google Scholar 

  • Wang XH, Schröder HC, Brandt D, Wiens M, Lieberwirth I, Glasser G, Schloßmacher U, Wang S, Müller WEG (2011a) Sponge bio-silica formation involves syneresis following polycondensation in vivo. Chembiochem 12:2316–2324

    CAS  PubMed  Google Scholar 

  • Wang XH, Wiens M, Schröder HC, Jochum KP, Schloßmacher U, Götz H, Duschner H, Müller WEG (2011b) Circumferential spicule growth by pericellular silica deposition in the hexactinellid sponge Monorhaphis chuni. J Exp Biol 214:2047–2056

    CAS  PubMed  Google Scholar 

  • Wang XH, Wiens M, Schröder HC, Schloßmacher U, Pisignano D, Jochum KP, Müller WEG (2011c) Evagination of cells controls bio-silica formation and maturation during spicule formation in sponges. PLoS One 6:e20523

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang XH, Schloßmacher U, Wiens M, Batel R, Schröder HC, Müller WEG (2012a) Silicateins, silicatein interactors, and cellular interplay in sponge skeletogenesis: formation of the glass fiber-like spicules. FEBS J 279:1721–1736

    CAS  PubMed  Google Scholar 

  • Wang XH, Schröder HC, Wiens M, Ushijima H, Müller WEG (2012b) Bio-silica and bio-polyphosphate: applications in biomedicine (bone formation). Curr Opin Biotechnol 23:570–578

    CAS  PubMed  Google Scholar 

  • Wang XH, Schröder HC, Wang K, Kaandorp JA, Müller WEG (2012c) Genetic, biological and structural hierarchies during sponge spicule formation: from soft sol-gels to solid 3D silica composite structures. Soft Matter 8:9501–9518

    CAS  Google Scholar 

  • Wang XH, Wiens M, Schloßmacher U, Jochum KP, Schröder HC, Müller WEG (2012d) Bio-sintering/bio-fusion of silica in sponge spicules: a review. Adv Eng Mater 14:B4–B12

    Google Scholar 

  • Wang XH, Schloßmacher U, Schröder HC, Müller WEG (2013a) Biologically-induced transition of bio-silica sol to mesoscopic gelatinous flocs: a biomimetic approach to a controlled fabrication of bio-silica structures. Soft Matter 9:654–664

    CAS  Google Scholar 

  • Wang XH, Schröder HC, Feng QL, Draenert F, Müller WEG (2013b) The deep-sea natural products, biogenic polyphosphate (bio-polyP) and biogenic silica (bio-silica) as biomimetic scaffolds for bone tissue engineering: fabrication of a morphogenetically-active polymer. Mar Drugs 11:718–746

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang XH, Schröder HC, Schloßmacher U, Jiang L, Korzhev M, Müller WEG (2013c) Biosilica aging: from enzyme-driven gelation via syneresis to chemical/biochemical hardening. Biochim Biophys Acta 1830:3437–3446

    CAS  PubMed  Google Scholar 

  • Waselau M, Patrikoski M, Juntunen M, Kujala K, Kääriäinen M, Kuokkanen H, Sándor GK, Vapaavuori O, Suuronen R, Mannerström B, von Rechenberg B, Miettinen S (2012) Effects of bioactive glass S53P4 or beta-tricalcium phosphate and bone morphogenetic protein-2 and bone morphogenetic protein-7 on osteogenic differentiation of human adipose stem cells. J Tissue Eng. doi:10.1177/2041731412467789

    PubMed Central  PubMed  Google Scholar 

  • Wen HB, Fincham AG, Moradian-Oldak J (2001) Progressive accretion of amelogenin molecules during nanospheres assembly revealed by atomic force microscopy. Matrix Biol 20:387–395

    CAS  PubMed  Google Scholar 

  • Whyte MP (2001) Hypophosphatasia. In: Scriver CR, Beaudet AL, Sly WS, Valle D, Childs B, Kinzler KW, Vogelstein B (eds) The metabolic and molecular bases of inherited diseases. McGraw-Hill Inc., New York, NY, pp 5313–5329

    Google Scholar 

  • Wiens M, Belikov SI, Kaluzhnaya OV, Krasko A, Schröder HC, Perovic-Ottstadt S, Müller WEG (2006) Molecular control of serial module formation along the apical-basal axis in the sponge Lubomirskia baicalensis: silicateins, mannose-binding lectin and mago nashi. Dev Genes Evol 216:229–242

    CAS  PubMed  Google Scholar 

  • Wiens M, Belikov SI, Kaluzhnaya OV, Adell T, Schröder HC, Perovic-Ottstadt S, Kaandorp JA, Müller WEG (2008) Regional and modular expression of morphogenetic factors in the demosponge Lubomirskia baicalensis. Micron 39:447–460

    CAS  PubMed  Google Scholar 

  • Wiens M, Bausen M, Natalio F, Link T, Schlossmacher U, Müller WEG (2009) The role of the silicatein-α interactor silintaphin-1 in biomimetic biomineralization. Biomaterials 30:1648–1656

    CAS  PubMed  Google Scholar 

  • Wiens M, Wang X, Natalio F, Schröder HC, Schloßmacher U, Wang S, Korzhev M, Geurtsen W, Müller WEG (2010a) Bioinspired fabrication of bio-silica-based bone-substitution materials. Adv Eng Biomater 12:B438–B450

    Google Scholar 

  • Wiens M, Wang X, Schloßmacher U, Lieberwirth I, Glasser G, Ushijima H, Schröder HC, Müller WEG (2010b) Osteogenic potential of biosilica on human osteoblast-like (SaOS-2) cells. Calcif Tissue Int 87:513–524

    CAS  PubMed  Google Scholar 

  • Wiens M, Wang X, Schröder HC, Kolb U, Schloßmacher U, Ushijima H, Müller WEG (2010c) The role of biosilica in the osteoprotegerin/RANKL ratio in human osteoblast-like cells. Biomaterials 31:7716–7725

    CAS  PubMed  Google Scholar 

  • Wiens M, Wang XH, Unger A, Schröder HC, Grebenjuk V, Pisignano D, Jochum K, Müller WEG (2010d) Flashing light signaling circuit in sponges: endogenous light generation after tissue ablation in Suberites domuncula. J Cell Biochem 111:1377–1389

    CAS  PubMed  Google Scholar 

  • Wiens M, Schröder HC, Wang XH, Link T, Steindorf D, Müller WEG (2011) Isolation of the silicatein-α interactor silintaphin-2 by a novel solid-phase pull-down assay. Biochemistry 50:1981–1990

    CAS  PubMed  Google Scholar 

  • Woesz A, Weaver JC, Kazanci M, Dauphin Y, Aizenberg J, Morse DE, Fratzl P (2006) Micromechanical properties of biological silica in skeletons of deep-sea sponges. J Mater Res 21:2068–2078

    CAS  Google Scholar 

  • Wolf SE, Schlossmacher U, Pietuch A, Mathiasch B, Schröder HC, Müller WEG, Tremel W (2010) Formation of silicones mediated by the sponge enzyme silicatein-α. Dalton Trans 39:9245–9249

    CAS  PubMed  Google Scholar 

  • Wüst S, Müller R, Hofmann S (2011) Controlled positioning of cells in biomaterials—approaches towards 3D tissue printing. J Funct Biomater 2:119–154

    Google Scholar 

  • Zhou G, Zheng Q, Engin F, Munivez E, Chen Y, Sebald E, Krakow D, Lee B (2006) Dominance of SOX9 function over RUNX2 during skeletogenesis. Proc Natl Acad Sci USA 103:19004–19009

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

W.E.G.M. is a holder of an ERC Advanced Investigator grant (no. 268476 BIOSILICA) as well as of an ERC Proof-of-Concept grant (no. 324564; silica-based nanobiomedical approaches for treatment of bone diseases). This work was supported by grants from the European Commission (large-scale integrating project no. 311848, BlueGenics; project no. FP7-KBBE-2010-4-266033, SPECIAL; project no. PIRSES-GA-2009-246987, European-Chinese Research Staff Exchange Cluster MarBioTec*EU-CN*), the German Bundesministerium für Bildung und Forschung (International Bureau) (no. CHN 09/1AP – German-Chinese Joint Lab on Bio-Nano-Composites), the Public Welfare Project of Ministry of Land and Resources of the People’s Republic of China (grant no. 201011005-06), and the International S&T Cooperation Program of China (grant no. 2008DFA00980).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Heinz C. Schröder or Werner E. G. Müller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schröder, H.C., Wang, X., Schloßmacher, U., Wiens, M., Müller, W.E.G. (2013). Biogenic Inorganic Polysilicates (Biosilica): Formation and Biomedical Applications. In: Müller, W., Wang, X., Schröder, H. (eds) Biomedical Inorganic Polymers. Progress in Molecular and Subcellular Biology, vol 54. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41004-8_8

Download citation

Publish with us

Policies and ethics