Skip to main content

Cell Reactivity to Different Silica

  • Chapter
  • First Online:
Book cover Biomedical Inorganic Polymers

Part of the book series: Progress in Molecular and Subcellular Biology ((PMSB,volume 54))

Abstract

The interaction between mineral structures and living beings is increasingly attracting the interest of research. The formation of skeletons, geomicrobiology, the study of the origin of life, soil biology, benthos biology, human and mammalian diseases generated by the inhalation of dust and biomaterials are some examples of scientific areas where the topic has a relevance. In this chapter we focus on cell reactivity to siliceous rocks and to the various forms of silicon dioxide, in particular. The examples here reported carefully review how such minerals may strongly affect different living beings, from simple ones to humans. The biomineralogy concept is explained, focusing on the effects of rocks on cell growth and development. The toxic action of silicon dioxide in mammalian lungs is the oldest evidence of crystalline silica bioactivity. More recently, we could demonstrate that crystalline silica has a deep impact on cell biology throughout the whole animal kingdom. One of the most illustrative case studies is the marine sponge Chondrosia reniformis, which has the amazing ability to incorporate and etch crystalline silica releasing dissolved silicates in the medium. This specific and selective action is due to the chemical reaction of ascorbic acid with quartz surfaces. One consequence of this is an increased production of collagen. The discovery of this mechanism opened the door to a new understanding of silica toxicity for animal cells and mammalian cells in particular. The presence of silica in sea water and substrates also affects processes like the settlement of larvae and the growth of diatoms. The following sections review all such aspects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adamson IY, Letourneau HL, Bowden DH (1991) Comparison of alveolar and interstitial macrophages in fibroblast stimulation after silica and long or short asbestos. Lab Invest 64:339–344

    CAS  PubMed  Google Scholar 

  • Azad N, Rojanasakul Y, Vallyathan V (2008) Inflammation and lung cancer: roles of reactive oxygen/nitrogen species. J Toxicol Environ Health B Crit Rev 11:1–15

    CAS  PubMed  Google Scholar 

  • Bavestrello G (1996) Particolarità nella formazione dello scheletro osservato in alcune specie di poriferi delle isole Eolie. In: Faranda FM, Povero P (eds) Caratterizzazione ambientale marina del sistema Eolie e dei bacini limitrofi di Cefalù e Gioia (EOCUMM95). G. Lang Artigrafiche, Genova, pp 317–322

    Google Scholar 

  • Bavestrello G, Benatti U, Cattaneo-Vietti R, Cerrano C, Giovine M (1995) Quartz dissolution by the sponge Chondrosia reniformis (Porifera, Demospongiae). Nature 378:374–376

    CAS  Google Scholar 

  • Bavestrello G, Cerrano C, Cattaneo-Vietti R, Sarà M, Calabria F, Cortesogno L (1996) Selective incorporation of foreign material in Chondrosia reniformis (Porifera, Demospongiae). Ital J Zool 63:215–220

    Google Scholar 

  • Bavestrello G, Arillo A, Calcinai B, Cerrano C, Lanza S, Sarà M, Cattaneo-Vietti R, Gaino E (1998a) Siliceous particles incorporation in Chondrosia reniformis (Porifera, Demospongiae). Ital J Zool 65:343–348

    Google Scholar 

  • Bavestrello G, Benatti U, Calcinai B, Cattaneo-Vietti R, Cerrano C, Favre A, Giovine M, Lanza S, Pronzato R, Sarà M (1998b) Body polarity and mineral selectivity in the demosponge Chondrosia reniformis. Biol Bull 195:120–125

    Google Scholar 

  • Bavestrello G, Bianchi CN, Calcinai B, Cattaneo-Vietti R, Cerrano C, Morri C, Puce S, Sarà M (2000) Bio-mineralogy as a structuring factor for rocky bottom communities. Mar Ecol Prog Ser 193:241–249

    Google Scholar 

  • Bavestrello G, Benatti U, Cattaneo-Vietti R, Cerrano C, Giovine M (2003) Sponge cell reactivity to various forms of silica. Microsc Res Tech 62:327–335

    CAS  PubMed  Google Scholar 

  • Bennet PC (1991) Quartz dissolution in organic-rich aqueous systems. Geochim Cosmochim Acta 55:1781–1797

    Google Scholar 

  • Bonasoro F, Wilkie IC, Bavestrello G, Cerrano C, Candia Carnevali MD (2001) Dynamic structure of the mesohyl in the sponge Chondrosia reniformis (Porifera, Demospongiae). Zoomorphology 121:109–121

    Google Scholar 

  • Borm PJ, Tran L, Donaldson K (2011) The carcinogenic action of crystalline silica: a review of the evidence supporting secondary inflammation-driven genotoxicity as a principal mechanism. Crit Rev Toxicol 41(9):756–770

    CAS  PubMed  Google Scholar 

  • Bouligand Y (2004) The renewal of ideas about biomineralisations. CR Palevol 3:617–628

    Google Scholar 

  • Bowden DH, Hedgecock C, Adamson IY (1989) Silica-induced pulmonary fibrosis involves the reaction of particles with interstitial rather than alveolar macrophages. J Pathol 158:73–80

    CAS  PubMed  Google Scholar 

  • Brown JR, DuBois RN (2004) Cyclooxygenase as a target in lung cancer. Clin Cancer Res 10:4266s–4269s

    CAS  PubMed  Google Scholar 

  • Brown LA, Ping XD, Harris FL, Gauthier TW (2007) Glutathione availability modulates alveolar macrophage function in the chronic ethanol-fed rat. Am J Physiol Lung Cell Mol Physiol 292:L824–L832

    CAS  PubMed  Google Scholar 

  • Brugler MR, France SC (2007) The complete mitochondrial genome of the black coral Chrysopathes formosa (Cnidaria: Anthozoa: Antipatharia) supports classification of antipatharians within the subclass Hexacorallia. Mol Phylogenet Evol 42:776–788

    CAS  PubMed  Google Scholar 

  • Carlisle EM (1972) Silicon: an essential element for the chick. Science 178:619–621

    CAS  PubMed  Google Scholar 

  • Carlisle EM (1980) Biochemical and morphological changes associated with long bone abnormalities in silicon deficiency. J Nutr 110:1046–1056

    CAS  PubMed  Google Scholar 

  • Castranova V (2004) Signaling pathways controlling the production of inflammatory mediators in response to crystalline silica exposure: role of reactive oxygen/nitrogen species. Free Radic Biol Med 37(7):916–925

    CAS  PubMed  Google Scholar 

  • Castranova V, Vallyathan V, Wallace WE (1996) Silica and silica-induced lung diseases. CRC, Boca Raton, FL

    Google Scholar 

  • Cattaneo-Vietti R, Albertelli G, Bavestrello G, Bianchi CN, Cerrano C, Chiantore M, Gaggero L, Morri C, Schiaparelli S (2002) Can rock composition affect sublittoral epibenthic communities? Mar Ecol 23:65–77

    Google Scholar 

  • Cerrano C, Arillo A, Bavestrello G, Benatti U, Calcinai B, Cattaneo-Vietti R, Cortesogno L, Gaggero L, Giovine M, Puce S, Sarà M (1999a) Organism-quartz interactions in structuring benthic communities: towards a marine bio-mineralogy? Ecol Lett 2:1–3

    Google Scholar 

  • Cerrano C, Bavestrello G, Cattaneo-Vietti R, Giovine M, Benatti U, Sarà M (1999b) Incorporation of inorganic matter in Chondrosia reniformis (Porifera, Demospongiae): the role of water turbulence. Mem Queensl Mus 44:85–90

    Google Scholar 

  • Cerrano C, Arillo A, Bavestrello G, Benatti U, Bonpadre S, Cattaneo-Vietti R, Gaggero L, Giovine M, Leone L, Lucchetti G, Sarà M (1999c) Calcium oxalate production in the marine sponge Chondrosia reniformis. Mar Ecol Prog Ser 179:297–300

    CAS  Google Scholar 

  • Cerrano C, Calcinai B, Di Camillo CG, Valisano L, Bavestrello G (2007a) How and why do sponges incorporate foreign material? Strategies in Porifera. In: Custódio MR, Lôbo-Hajdu G, Hajdu E, Muricy G (eds) Porifera research: biodiversity, innovation and sustainability. Museu Nacional, Série Livros 28, Rio de Janeiro

    Google Scholar 

  • Cerrano C, Sambolino P, Calcinai B, Azzini F, Bavestrello G (2007b) Growth of the massive morph of Cliona nigricans (Schmidt, 1862) (Porifera, Clionaidae). Ital J Zool 74:13–19

    Google Scholar 

  • Chen W, Liu Y, Wang H (2012) Long-term exposure to silica dust and risk of total and cause-specific mortality in Chinese workers: a cohort study. PLoS Med 9(4):e1001206

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cooper GS, Miller FW, Germolec DR (2002) Occupational exposures and autoimmune diseases. Int Immunopharmacol 2:303–313

    CAS  PubMed  Google Scholar 

  • Cooper GS, Makris SL, Nietert PJ, Jinot J (2009) Evidence of autoimmune-related effects of trichloroethylene exposure from studies in mice and humans. Environ Health Perspect 117:696–702

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cowie RL (1994) The epidemiology of tuberculosis in gold miners with silicosis. Am J Respir Crit Care Med 150:1460–1462

    CAS  PubMed  Google Scholar 

  • Craighead JE, Kleinerman J, Abraham JL, Gibbs AR, Green FHY, Harley RA, Ruettner JR, Vallyathan V, Juliano EB (1988) Diseases associated with exposure to silica and non-fibrous silicate minerals. Arch Pathol Lab Med 112:673–720

    Google Scholar 

  • Davis GS (1986) The pathogenesis of silicosis: state of the art. Chest 89:166S–169S

    CAS  PubMed  Google Scholar 

  • Davis AR (2009) The role of mineral, living and artificial substrata in the development of subtidal assemblages. In: Wahl M (ed) Marine hard bottom communities. Springer, New York, NY

    Google Scholar 

  • De Laubenfels MW (1950) The Porifera of Bermuda Archipelago. Trans Zool Soc Lond 27:1–154

    Google Scholar 

  • Demarest MS, Brzezinski MA, Beucher C (2009) Fractionation of silicon isotopes during biogenic silica dissolution. Geochim Cosmochim Acta 73:5572–5583

    CAS  Google Scholar 

  • Ding M, Chen F, Shi X, Yucesoy B, Mossman B, Vallyathan V (2002) Diseases caused by silica: mechanisms of injury and disease development. Int Immunopharmacol 2:173–182

    CAS  PubMed  Google Scholar 

  • Doiron K, Linossier I, Fay F, Yong J, Wahid EA, Hadjiev D, Bourgougnon N (2012) Dynamic approaches of mixed species biofilm formation using modern technologies. Mar Environ Res 78:40–47, http://dx.doi.org/10.1016/j.marenvres.2012.04.00

    CAS  PubMed  Google Scholar 

  • Donaldson K, Borm PJ (1998) The quartz hazard: a variable entity. Ann Occup Hyg 42:287–294

    CAS  PubMed  Google Scholar 

  • Dove PM, Rimstidt JD (1994) Silica-water interactions. In: Heaney P, Prewitt C, Gibbs G (eds) The silica polymorphs, vol 29, Reviews in mineralogy. Mineralogical Society of America, Washington, DC, pp 259–308

    Google Scholar 

  • Dove PM, Han N, Wallace AF, De Yoreo JJ (2008) Kinetics of amorphous silica dissolution and the paradox of the silica polymorphs. Proc Natl Acad Sci USA 105:9903–9908

    CAS  PubMed  Google Scholar 

  • Exposito J, Cluzel C, Garrone R, Lethias C (2002) Evolution of collagen. Anat Rec 268:302–316

    CAS  PubMed  Google Scholar 

  • Faimali M, Garaventa F, Terlizzi A, Chiantore M, Cattaneo-Vietti R (2004) The interplay of substrate nature and biofilm formation in regulating Balanus amphitrite Darwin, 1854 larval settlement. J Exp Mar Biol Ecol 306:37–50

    Google Scholar 

  • Fenoglio I, Martra G, Coluccia S, Fubini B (2000) Possible role of ascorbic acid in the oxidative damage induced by inhaled crystalline silica particles. Chem Res Toxicol 13:971–975

    CAS  PubMed  Google Scholar 

  • Finkel ZV, Kotrc B (2010) Silica use through time: macroevolutionary change in the morphology of the diatom frustule. Geomicrobiol J 27:596–608

    CAS  Google Scholar 

  • Fubini B, Hubbard A (2003) Reactive oxygen species (ROS) and reactive nitrogen species (RNS) generation by silica in inflammation and fibrosis. Free Radic Biol Med 34:1507–1516

    CAS  PubMed  Google Scholar 

  • Fujii T, Reimer JD (2011) Phylogeny of the highly divergent zoanthid family Microzoanthidae (Anthozoa, Hexacorallia) from the Pacific. Zool Scr 40:418–431

    Google Scholar 

  • Gamble JF (2011) Crystalline silica and lung cancer: a critical review of the occupational epidemiology literature of exposure response studies testing this hypothesis. Crit Rev Toxicol 41(5):404–465

    CAS  PubMed  Google Scholar 

  • Garrone R (1978) Phylogenesis of connective tissue: morphological aspects and biosynthesis of sponge intercellular matrix, vol 5, Frontiers of matrix biology. Karger, Basel

    Google Scholar 

  • Garrone R, Huc A, Junqua S (1975) Fine structure and physicochemical studies on the collagen of the marine sponge Chondrosia reniformis Nardo. J Ultrastruct Res 52:261–275

    CAS  PubMed  Google Scholar 

  • Gil-Turnes MS, Hay ME, Fenical W (1989) Symbiotic marine bacteria chemically defend crustacean embryos from a pathogenic fungus. Science 246:116–118

    CAS  PubMed  Google Scholar 

  • Giovine M, Pozzolini M, Fenoglio I, Scarfi S, Ghiazza M, Benatti U, Fubini B (2003) Crystalline silica incubated in ascorbic acid acquires a higher cytotoxic potential. Toxicol Ind Health 18:249–255

    Google Scholar 

  • Gough PJ, Gordon S (2000) The role of scavenger receptors in the innate immune system. Microbes Infect 2:305–311

    CAS  PubMed  Google Scholar 

  • Green FHY, Vallyathan V (1996) Pathologic responses to inhaled silica. In: Castranova V, Vallyathan V, Wallace WE (eds) Silica and silica-induced lung diseases. CRC, Boca Raton, FL, pp 39–59

    Google Scholar 

  • Guidetti P, Bianchi CN, Chiantore MC, Schiaparelli S, Morri C, Cattaneo-Vietti R (2004) Living on the rocks: substrate mineralogy and the structure of subtidal rocky substrate communities in the Mediterranean Sea. Mar Ecol Prog Ser 274:57–68

    Google Scholar 

  • Hadfield MG (2011) Biofilms and marine invertebrate larvae: what bacteria produce that larvae use to choose settlement sites. Ann Rev Mar Sci 3:453–470

    PubMed  Google Scholar 

  • Haeckel E (1872) Die Kalkschwämme. G. Reiser, Berlin

    Google Scholar 

  • Hamilton RE Jr, Thakur SA, Holian A (2008) Silica binding and toxicity in alveolar macrophages. Free Radic Biol Med 44:1246–1258

    CAS  PubMed Central  PubMed  Google Scholar 

  • Heinemann S, Ehrlich H, Douglas T, Heinemann C, Worch H, Schatton W, Hanke T (2007) Ultrastructural studies on the collagen of the marine sponge Chondrosia reniformis Nardo. Biomacromolecules 8:3452–3457

    CAS  PubMed  Google Scholar 

  • Hess EV (2002) Environmental chemicals and autoimmune disease: cause and effect. Toxicology 181–182:65–70

    PubMed  Google Scholar 

  • Hildebrand M (2008) Diatoms, biomineralization processes, and genomics. Chem Rev 108:4855–4874

    CAS  PubMed  Google Scholar 

  • Hinz B, Brune K (2002) Cyclooxygenase-2 10 years later. J Pharmacol Exp Ther 300:367–375

    CAS  PubMed  Google Scholar 

  • Hnizdo E, Murray J (1988) Risk of pulmonary tuberculosis relative to silicosis and exposure to silica dust in South Africa gold miners. Occup Environ Med 55:496–502

    Google Scholar 

  • Holmes SP, Sturgess CJ, Davies MS (1997) The effect of rock-type on the settlement of Balanus balanoides (L) cyprids. Biofouling 11:137–147

    Google Scholar 

  • Hsu H, Hijjar DP, Khan KM, Falcone DJ (1988) Ligand binding to scavenger receptor-A induces urokinase-type plasminogen activator expression by a protein kinase C delta-dependent. J Biol Chem 273:1240–1246

    Google Scholar 

  • Hsu H, Chiu SL, Wen MH, Chen KY, Hua KF (2001) Ligands of macrophage scavenger receptor induce cytokine expression via differential modulation of protein kinase signalling pathways. J Biol Chem 276:28719–28730

    CAS  PubMed  Google Scholar 

  • IARC (1987) Silica, some silicates, vol 42, IARC monographs on the evaluation of carcinogenic risk of chemicals to humans. IARC, Lyon

    Google Scholar 

  • IARC (1997) Silica, some silicates, coal dust and para-aramid fibrils, vol 68, IARC monographs on the evaluation of carcinogenic risk of chemicals to humans. IARC, Lyon

    Google Scholar 

  • Iler RK (1979) The chemistry of silica. Plenum, New York, NY

    Google Scholar 

  • Jézéquel MV, Hildebrand M, Brzezinski MA (2000) Silicification in diatoms. Implication for growth. J Phycol 36:821–840

    Google Scholar 

  • Jin X, Gruber N, Dunne JP, Sarmiento JL, Armstrong RA (2006) Diagnosing the contribution of phytoplankton functional groups to the production and export of particulate organic carbon, CaCO3, and opal from global nutrient and alkalinity distributions. Global Biogeochem Cy. doi:10.1029/2005GB002532

    Google Scholar 

  • Kamatani A (1971) Physical and chemical characteristics of biogenous silica. Mar Biol 68:91–96

    Google Scholar 

  • Keough MJ, Raimondi PT (1995) Responses of settling invertebrate larvae to bioorganic films: effects of different types of films. J Exp Mar Biol Ecol 185:235–253

    Google Scholar 

  • Keough MJ, Raimondi PT (1996) Responses of settling invertebrate larvae to bioorganic films: effects of large-scale variation in films. J Exp Mar Biol Ecol 207:59–78

    Google Scholar 

  • Kinrade SD, Schach AS, Hamilton RJ, Knight CT (2001) NMR evidence of pentaoxo organosilicon complexes in dilute neutral aqueous silicate solutions. Chem Commun (Cambr) 7:1564–1565

    Google Scholar 

  • Kobzik L (1995) Lung macrophage uptake of unopsonized environmental particulates. Role for scavenger-type receptors. J Immunol 155:367–376

    CAS  PubMed  Google Scholar 

  • Krasko A, Lorenz B, Batel R, Schröder HC, Müller IM, Müller WEG (2000) Expression of silicatein and collagen genes in the marine sponge Suberites domuncula is controlled by silicate and myotrophin. Eur J Biochem 267:4878–4887

    CAS  PubMed  Google Scholar 

  • Kreyling WG (1992) Intracellular particle dissolution in alveolar macrophages. Environ Health Perspect 97:121–126

    CAS  PubMed Central  PubMed  Google Scholar 

  • Loewus FA (1980) L-ascorbic acid: metabolism, biosynthesis, function. In: Press J (ed) The biochemistry of plants, vol 3. Academic, New York, NY

    Google Scholar 

  • Maeda M, Nishimura Y, Kumagai N, Hayashi H, Hatayama T, Katoh M, Miyahara N, Yamamoto S, Hirastuka J, Otsuki T (2010) Dysregulation of the immune system caused by silica and asbestos. J Immunotoxicol 7(4):268–278

    CAS  PubMed  Google Scholar 

  • Maehira F, Iinuma Y, Eguchi Y, Miyagi I, Teruya S (2008) Effect of soluble silicon compound and deep sea water on biochemical and mechanical properties of bone and the related gene expression in mice. J Bone Miner Metab 26:446–455

    CAS  PubMed  Google Scholar 

  • Manini E, Luna GM (2003) Influence of the mineralogical composition on microbial activities in marine sediments: an experimental approach. Chem Ecol 19:399–410

    CAS  Google Scholar 

  • McDougald D, Rice SA, Barraud N, Steinberg PD, Kjelleberg S (2012) Should we stay or should we go: mechanisms and ecological consequences for biofilm dispersal. Nat Rev Microbiol 10(1):39–50

    CAS  Google Scholar 

  • Migliaccio CT, Hamilton RF Jr, Holian A (2005) Increase in a distinct pulmonary macrophage subset possessing an antigen-presenting cell phenotype and in vitro APC activity following silica exposure. Toxicol Appl Pharmacol 205:168–176

    CAS  PubMed  Google Scholar 

  • Minchin EA (1900) In: Ray Lancaster E (ed) A treatise on zoology, p 42

    Google Scholar 

  • Murphy JE, Tedbury PR, Homer-Vanniasinkam S, Walker JH, Ponnambalam S (2005) Biochemistry and cell biology of mammalian scavenger receptors. Atherosclerosis 182:1–15

    CAS  PubMed  Google Scholar 

  • Nakamura T, Hinagata J, Tanaka T, Imanishi T, Wada J, Kodama T, Doi T (2002) HSP90, HSP70 and GAPDH directly interact with the cytoplasmic domain of macrophage scavenger receptors. Biochem Biophys Res Commun 290:858–864

    CAS  PubMed  Google Scholar 

  • Nickel M, Brümmer F (2003) In vitro sponge fragment culture of Chondrosia reniformis (Nardo, 1847). J Biotechnol 100:147–159

    CAS  PubMed  Google Scholar 

  • Palecanda A, Kobzik L (2001) Receptors for unopsonized particles: the role of alveolar macrophage scavenger receptors. Curr Mol Med 1:589–595

    CAS  PubMed  Google Scholar 

  • Penna A, Magnani M, Fenoglio I, Fubini B, Cerrano C, Giovine M, Bavestrello G (2003) Marine diatom growth on the different forms of particulate silica: evidence of cell/particle interaction. Aquat Microb Ecol 32:299–306

    Google Scholar 

  • Piguet PF, Collart MA, Grau GE, Sappino AP, Vassalli P (1990) Requirement of tumor necrosis factor for development of silica-induced pulmonary fibrosis. Nature 344:245–247

    CAS  PubMed  Google Scholar 

  • Pozzolini M, Valisano L, Cerrano C, Menta M, Schiaparelli S, Bavestrello G, Benatti U, Giovine M (2010) Influence of rocky substrata on three-dimensional sponge cells model development. In Vitro Cell Dev Biol Anim 46(2):140–147

    PubMed  Google Scholar 

  • Pozzolini M, Buzzone F, Berilli V, Mussino F, Cerrano C, Benatti U, Giovine M (2012) Molecular characterization of a nonfibrillar collagen from the marine sponge Chondrosia reniformis Nardo 1847 and positive effects of soluble silicates on its expression. Mar Biotechnol 14(3):281–293

    CAS  PubMed  Google Scholar 

  • Previati M, Palma M, Bavestrello G, Falugi C, Cerrano C (2010) Reproductive biology of Parazoanthus axinellae (Schmidt 1862) and Savalia savaglia (Bertoloni 1819) (Cnidaria, Zoanthidea) from the NW Mediterranean coast. Mar Ecol Evol Perspect 31:555–565

    Google Scholar 

  • Qu Y, Tang Y, Cao D, Wu F, Liu J, Lu G, Zhang Z, Xia Z (2007) Genetic polymorphisms in alveolar macrophage response-related genes, and risk of silicosis and pulmonary tuberculosis in chinese iron miners. Int J Hyg Environ Health 210:679–689

    CAS  PubMed  Google Scholar 

  • Ragueneau O, Tréguer P, Leynaert A, Anderson RF, Brzezinski MA, DeMaster DJ, Dugdale RC, Dymond J, Fischer G, François R, Heinze C, Maier-Reimer E, Jézéquel MV, Nelson DM, Quéguiner B (2000) A review of the Si cycle in the modern ocean: recent progress and missing gaps in the application of biogenic opal as paleoproductivity proxy. Global Planet Change 26:317–365

    Google Scholar 

  • Ramanathan R, Campbell JL, Soni SK, Bhargava SK, Bansal V (2011) Cationic amino acids specific biomimetic silicification in ionic liquid: a quest to understand the formation of 3-D structures in diatoms. PLoS One 6:e17707

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rosen G (1943) The history of miners’ diseases: a medical and social interpretation. Schuman’s, New York, NY, pp 459–476

    Google Scholar 

  • Rovida CL (1871) Un caso di silicosi del polmone con analisi chimica. Ann di Chim Appl alla Med 13:102

    Google Scholar 

  • Sarà M, Vacelet J (1973) Écologie des démosponges. In: Grassé PP (ed) Traité de Zoologie, Tome III: spongiaires. Masson et Cie, Paris

    Google Scholar 

  • Scarfì S, Benatti U, Pozzolini M, Clavarino E, Ferraris C, Magnone M, Valisano L, Giovine M (2007) Ascorbic acid pre-treated quartz enhances cyclooxygenase-2 expression in raw 264.7 murine macrophages. FEBS J 274:60–73

    PubMed  Google Scholar 

  • Scarfì S, Magnone M, Ferraris C, Pozzolini M, Benvenuto F, Benatti U, Giovine M (2009) Ascorbic acid pre-treated quartz stimulates TNF-α release in RAW 264.7 murine macrophages through ROS production and membrane lipid peroxidation. Respir Res 10:25. doi:10.1186/1465-9921-10-25

    PubMed Central  PubMed  Google Scholar 

  • Schins RP, Knaapen AM (2007) Genotoxicity of poorly soluble particles. Inhal Toxicol 19(S1):189–198

    CAS  PubMed  Google Scholar 

  • Schultes S, Lambert C, Pondaven P, Corvaisier R, Jansen S, Ragueneau O (2010) Recycling and uptake of Si(OH)4 when protozoan grazers feed on diatoms. Protist 161:288–303

    CAS  PubMed  Google Scholar 

  • Schulze FE (1879) Untersuchungenüber den Bau und die Entwicklung der Spongien. VI. Die Gattung Spongelia. Z Wiss Zool 32:117–157

    Google Scholar 

  • Shaw ME (1927) Note on the inclusion of sand in sponges. Ann Mag Nat Hist 19:601–609

    Google Scholar 

  • Shipe RF, Brzezinski MA (1999) A study of Si deposition study in Rhizosolenia (Bacillariophyceae) mats using novel 32Si autoradiographic method. J Phycol 35:995–1004

    CAS  Google Scholar 

  • Sollas IBJ (1908) The inclusion of foreign bodies by sponges, with a description of a new genus and species of Monaxonida. Ann Mag Nat His 1:395–401

    Google Scholar 

  • Straif K, Benbrahim-Tallaa L, Baan R, Grosse Y, Secretan B, El Ghissassi F, Bouvard V, Guha N, Freeman C, Galichet L, Cogliano V (2009) A review of human carcinogens—part C: metals, arsenic, dusts and fibers. Lancet Oncol 10:453–454

    PubMed  Google Scholar 

  • Teragawa CK (1986a) Sponge dermal membrane morphology: histology of cell mediated particle transport during skeletal growth. J Morphol 190:335–348

    Google Scholar 

  • Teragawa CK (1986b) Particle transport and incorporation during skeleton formation in a keratose sponge Dysidea etheria. Biol Bull 170:321–334

    Google Scholar 

  • Thakur SA, Hamilton RE Jr, Holian A (2008) Role of scavenger receptor: a family in lung inflammation from exposure to environmental particles. J Immunotoxicol 5:151–157

    CAS  PubMed  Google Scholar 

  • Thibodeau M, Giardina C, Hubbard AK (2003) Silica-induced caspase activation in mouse alveolar macrophages is dependent upon mitochondrial integrity and aspartic proteolisis. Toxicol Sci 76:91–101

    CAS  PubMed  Google Scholar 

  • Thibodeau M, Giardina C, Knecht DA, Helble J, Hubbard AK (2004) Silica-induced apoptosis in mouse alveolar macrophages is initiated by lysosomal enzyme activity. Toxicol Sci 80:34–48

    CAS  PubMed  Google Scholar 

  • Todd CD, Keough MJ (1994) Larval settlement in hard substratum epifaunal assemblages: a manipulative field study of the effects of substratum filming and the presence of incumbents. J Exp Mar Biol Ecol 181:159–187

    Google Scholar 

  • Totti C, Cucchiari E, De Stefano M, Pennesi C, Romagnoli T, Bavestrello G (2007) Seasonal variations of epilithic diatoms on different hard substrates, in the northern Adriatic Sea. J Mar Biol Assoc UK 87:649–658

    CAS  Google Scholar 

  • Tréguer P, Nelson DM, Van Bennekom AJ, DeMaster DJ, Leynaert A (1995) The silica balance in the world ocean: a re-estimate. Science 268:375–379

    PubMed  Google Scholar 

  • Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44–84

    CAS  PubMed  Google Scholar 

  • Vallyathan V, Shi XL, Dalal NS, Irr W, Castranova V (1988) Generation of free radicals from freshly fractured silica dust: potential role in acute silica-induced lung injury. Am Rev Respir Dis 138:1213–1219

    CAS  PubMed  Google Scholar 

  • Van Colen C, Lenoir J, De Backer A, Vanelslander B, Vincx M, Degraer S, Ysebaert T (2009) Settlement of Macoma balthica larvae in response to benthic diatom films. Mar Biol 156:2161–2171

    Google Scholar 

  • Von Lendenfeld R (1889) A monograph on the horny sponges. Trübner, London

    Google Scholar 

  • Wahl M (1989) Marine epibiosis. I. Fouling and antifouling: some basic aspects. Mar Ecol Prog Ser 58:75–89

    Google Scholar 

  • Wilkie IC, Parma L, Bonasoro F, Bavestrello G, Cerrano C, Carnevali MD (2006) Mechanical adaptability of a sponge extracellular matrix: evidence for cellular control of mesohyl stiffness in Chondrosia reniformis Nardo. J Exp Biol 209(22):4436–4443

    CAS  PubMed  Google Scholar 

  • Zanetti G (2002) Dinamismo strutturale nella spugna Chondrosia reniformis (Porifera, Demospongiae): osservazioni in habitat. Dissertation, University of Milan

    Google Scholar 

Download references

Acknowledgements

The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement no. KBBE-2010-266033 to MG and from University of Genova Funding (PRA 2012) to SS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Giovine .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Giovine, M., Scarfì, S., Pozzolini, M., Penna, A., Cerrano, C. (2013). Cell Reactivity to Different Silica. In: Müller, W., Wang, X., Schröder, H. (eds) Biomedical Inorganic Polymers. Progress in Molecular and Subcellular Biology, vol 54. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41004-8_6

Download citation

Publish with us

Policies and ethics