Skip to main content

Conclusion

  • Chapter
  • First Online:
Pulsed Laser Ablation of Solids

Part of the book series: Springer Series in Surface Sciences ((SSSUR,volume 53))

  • 3074 Accesses

Abstract

As a versatile source of pure energy in a highly concentrated form, laser has emerged as an attractive tool and research instrument with potential for applications in an extraordinary variety of research and industrial fields. In some applications, such as atomic fusion and isotope separation, the laser power is very important. In other applications, the main reason for using laser lies in its monochromaticity and coherence (pollution detection, length/velocity measurement, interferometry, etc.), low divergence (laser show, pointer, audio-video player), or a combination of all of them (communication, holography, metrology).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. Edwards, R. Logan, M. Copeland, L. Reinisch, J. Davidson, B. Johnson, R. Maciunas, M. Mendenhall, R. Ossoff, J. Tribble, J. Werkhaven, D. O’Day, Tissue ablation by a free-electron laser tuned to the amide II band. Nature 371, 416–419 (1994)

    Article  ADS  Google Scholar 

  2. B. Choi, G. Vargas, D.X. Hammer, B. Sorg, T.J. Pfefer, J.M.H. Teichman, A.J. Welch, E.D. Jansen, Free electron laser ablation of urinary calculi: An experimental study. IEEE J. Sel. Top. Quantum Electron. 7, 1022–1033 (2001)

    Article  Google Scholar 

  3. S.R. Uhlhorn, R.A. London, A.J. Makarewicz, E.D. Jansen, Hydrodynamic modeling of tissue ablation with a free-electron laser, in Proceedings of Laser-Tissue Interaction XI., SPIE, vol. 3914A, p. 238 (2000)

    Google Scholar 

  4. H.R. Griem, Principles of Plasma Spectroscopy (Cambridge University Press, Cambridge, 2005)

    Google Scholar 

  5. J. Koch, D. Gunther, Review of the state-of-the-art of laser ablation inductively coupled plasma mass spectrometry. Appl. Spectrosc. 65, 155A–162A (2011)

    Article  ADS  Google Scholar 

  6. A.J. Carado, C.D. Quarles, A.M. Duffin, C.J. Barinaga, R.E. Russo, R.K. Marcus, G.C. Eiden, D.W. Koppenaal, Femtosecond laser ablation particle introduction to a liquid sampling-atmospheric pressure glow discharge ionization source. J. Anal. At. Spectrom. 27, 385–389 (2012)

    Article  Google Scholar 

  7. S.B. Wen, C.F. Chen, X. Mao, R.E. Russo, Guiding and focusing of a nanosecond infrared laser within transient hollow plasma femtosecond filament channels. J. Phys. D Appl. Phys. 45, 355203 (2012)

    Article  Google Scholar 

  8. V. Zorba, X. Mao, R.E. Russo, Ultrafast laser induced breakdown spectroscopy for high spatial resolution chemical analysis. Spectrochim. Acta, B-At. Spectrosc. 66, 189–192 (2011)

    ADS  Google Scholar 

  9. R. Ahmed, M.A. Baig, On the optimization for enhanced dual-pulse laser-induced breakdown spectroscopy. IEEE Trans. Plasma Sci. 38, 2052–2055 (2010)

    Article  ADS  Google Scholar 

  10. S.S. Yap, W.O. Siew, C.H. Nee, T.W. Reenaas, T.Y. Tou, Laser ablation and growth of Si and Ge. Thin Solid Films 520, 3266–3270 (2012)

    Article  ADS  Google Scholar 

  11. D.N. Patel, P.K. Pandey, R.K. Thareja, Stoichiometric investigations of laser-ablated brass plasma. Appl. Opt. 51, B192–B200 (2012)

    Article  Google Scholar 

  12. Q. Xiao, Z. Yao, J. Liu, R. Hai, H.Y. Oderji, H. Ding, Synthesis and characterization of Ag-Ni bimetallic nanoparticles by laser-induced plasma. Thin Solid Films 519, 7116–7119 (2011)

    Article  ADS  Google Scholar 

  13. J. Heitza, S. Yakunina, T. Stehrera, G. Wysockic, D. Bäuerlea, Laser-induced nanopatterning, ablation, and plasma spectroscopy in the near-field of an optical fiber tip. in, Proceedings of SPIE, vol. 7131, pp. 7131–7137 1W (2009).

    Google Scholar 

  14. M. Kompitsas, F. Roubani-Kalantzopoulou, I. Bassiotis, A. Diamantopoulou, A. Giannoudakos, Laser induced plasma spectroscopy (LIPS) as an efficient method for elemental analysis of environmental samples, in Proceedings of EARSeL-SIG-Workshop LIDAR, Dresden/FRG, pp. 130–138, 16–17 Jun 2000

    Google Scholar 

  15. S.S. Harilal, G.V. Miloshevsky, P.K. Diwakar, N.L. LaHaye, A. Hassanein, Experimental and computational study of complex shockwave dynamics in laser ablation plumes in argon atmosphere. Phys. Plasmas 19, 083504-1–083504-10 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihai Stafe .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stafe, M., Marcu, A., Puscas, N.N. (2014). Conclusion. In: Pulsed Laser Ablation of Solids. Springer Series in Surface Sciences, vol 53. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40978-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40978-3_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40977-6

  • Online ISBN: 978-3-642-40978-3

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics