Skip to main content

Material Removal and Deposition by Pulsed Laser Ablation and Associated Phenomena

  • Chapter
  • First Online:
Pulsed Laser Ablation of Solids

Part of the book series: Springer Series in Surface Sciences ((SSSUR,volume 53))

Abstract

This chapter starts with the presentation of some micro and nano requirements by describing some influences of the ambient gas and target material on the ablation process in general and on the ablation rate in particular. Ablation in liquids is also briefly presented as an alternative ablation technique. Nanoparticle formation from the ablation plume is further explained based on basic homogeneous condensation theory. In the last part the PLD process is presented through its basic components: ablation, plume propagation and particle deposition. Special attention is given to the plume propagation and filtering techniques. ‘Classical’ filtering techniques as axe-off, back-side and ‘eclipse’ techniques are described starting from the plume propagation. Also some more advanced multi-element masks and a more recent filtering technique based on the plume reflection developed by the authors are presented and described in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. Bauerle, Laser Processing and Chemistry (Springer, Berlin, 2000)

    Google Scholar 

  2. M. von Allmen, A. Blatter, Laser-Beam Interactions with Materials (Springer, Berlin, 1995)

    Google Scholar 

  3. J.F. Ready, Effects of High-Power Laser Radiation (Academic Press, New York, 1971)

    Google Scholar 

  4. W.M. Steen (ed.), Laser Material Processing (Springer, NewYork, 1991)

    Google Scholar 

  5. C.W. Draper, Laser and Electron Beam Processing of Materials, eds. by C.W. White, P.S. Peercy (Academic Press, NewYork, 1980), p. 721

    Google Scholar 

  6. B.L. Mordike, Materials Science and Technology, vol. 15, eds. by R.W. Cahn, P. Haasen, E.J. Kramer (VCH, Weinheim, 1993), p. 111

    Google Scholar 

  7. J. Mazumdar, Lasers for Materials Processing, ed. by M. Bass (North Holland, New York, 1983), p. 113

    Google Scholar 

  8. M. von Allem, Laser Annealing of Semiconductors, eds. by J.M. Poate, J.W. Mayer (Academic Press, New York, 1982), p. 43

    Google Scholar 

  9. C.W. White, M.J. Aziz, Surface Alloying by Ion, Electron and Laser Beams, eds. by L.E. Rehn, S.T. Picraux, H. Wiedersich (ASM, Metals Park O, 1987), p. 19

    Google Scholar 

  10. S.T. Picraux, D.M. Follstaedt, Laser-Solid Interactions and Transient Thermal Processing of Materials, eds. by J. Narayan, W.L. Brown, R.A. Lemons (North-Holland, New York, 1983), p. 751

    Google Scholar 

  11. N.M. Bulgakova and A.V. Bulgakov, Appl. Phys., A 73, 199 (2001)

    Google Scholar 

  12. M. Stafe, I. Vladoiu, I.M. Popescu, Cent. Eur. J. Phys. 6, 327 (2008)

    Google Scholar 

  13. ICALEO Conference Proceedings, 2008

    Google Scholar 

  14. B.N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, A. Tunnermann, Femtosecond, picosecond and nanosecond laser ablation of solids. Appl. Phys. A 63, 109 (1996)

    ADS  Google Scholar 

  15. J. Laeng, J. Laeng, J.G. Stewart, F.W. Liou, Int. J. Prod. Res. 38, 3973–3996 (2000)

    MATH  Google Scholar 

  16. C. Dawas (ed.), Laser Welding (McGraw-Hill, NewYork, 1992)

    Google Scholar 

  17. W.W. Duley (ed.), Laser Welding. (Wiley, NewYork, 1999), p. 1

    Google Scholar 

  18. C.W. Draper, J.M. Poate, Int. Met. Rev. 30, 85–108 (1985)

    Google Scholar 

  19. P.A. Molian, Surface Modification Technologies-An Engineers Guide, ed. by T.S. Sudarshan (Marcel Dekker, New York, 1989), p. 421

    Google Scholar 

  20. C.W. Draper, C.A. Ewing, J. Mater. Sci. 19, 3815 (1984)

    ADS  Google Scholar 

  21. J. Dutta Majumdar, I. Manna, Laser processing of materials. Sadhana 28, 495–562 (2003)

    Google Scholar 

  22. J. Dutta Majumdar and I. Manna (eds.), Laser-Assisted Fabrication of Materials, Springer Series in Materials Science 161 (Springer, Berlin, 2013). doi: 10.1007/978-3-642-28359-8\_1

    Google Scholar 

  23. M. Stafe, C. Negutu, N.N. Puscas, I.M. Popescu, Pulsed laser ablation of solids. Rom. Rep. Phys. 62, 758–770 (2010)

    Google Scholar 

  24. S.K. Ghandhi, VLSI Fabrication Principles, 2nd edn. (Wiley, New York, 1994)

    Google Scholar 

  25. A.A. Tseng, G.-X. Wang, Application of Laser Cutting and Linking Technology for Restructuring Interconnections in Microelectronic Devices, IEE/LEOS 1996 Summer Topical Meetings: Advanced Applications of Lasers in Materials and Processing (Keystone, Colorado, 1996)

    Google Scholar 

  26. A.A. Tseng, Y.-T. Chen, K.-J. Ma, Fabrication of high-aspect-ratio microstructures using excimer laser. Opt. Lasers Eng. 41, 827–847 (2004)

    Google Scholar 

  27. M. Stafe, C. Negutu, I. Vladoiu, A.N. Ducariu, I.M. Popescu, Experimental investigation of the dimensions and quality of laser-drilled holes in metals, eds. by J.H. Burge, O.W. Fähnle, R. Williamson, Optical Manufacturing and Testing VIII, Proc. SPIE 7426, 742614 (2009)

    Google Scholar 

  28. M. Stafe, C. Negutu, A. Ducariu, Pulsed laser ablated craters in aluminium in air and aqueous environments. Rom. Rep. Phys. 64, 155–162 (2012)

    Google Scholar 

  29. M. Stafe, I. Vladoiu, C. Negutu, I.M. Popescu, Sci. Bull. Univ. “Politehnica” Bucharest, Ser. A: Appl. Math. Phys. 71, 73 (2009)

    Google Scholar 

  30. I. Vladoiu, M. Stafe, C. Neguţu, I.M. Popescu, Sci. Bull. Univ. “Politehnica” Bucharest, Ser. A: Appl. Math. Phys. 70, 119 (2008)

    Google Scholar 

  31. M. Stafe, I. Vladoiu, C. Negutu, I.M. Popescu, Rom. Rep. Phys. 60, 789 (2008)

    Google Scholar 

  32. I. Vladoiu, M. Stafe, C. Negutu, I.M. Popescu, Eur. Phys. J.-Appl. Phys. 47, 30702 (2009)

    Google Scholar 

  33. C. Negutu, M. Stafe, S.S. Ciobanu, I. Vladoiu, N.N. Puscas, Sci. Bull. Univ. “Politehnica” Bucharest, Ser. A: Appl. Math. Phys. 70, 85 (2008)

    Google Scholar 

  34. M. Stafe, C. Negutu, I.M. Popescu, Theoretical determination of the ablation rate of metals in multiple-nanosecond laser pulses irradiation regime. Appl. Surf. Sci. 253, 6353 (2007)

    ADS  Google Scholar 

  35. A.E. Wynne, B.C. Stuart, Appl. Phys. A 76, 373–378 (2003)

    ADS  Google Scholar 

  36. S. Nolte, C. Momma, H. Jacobs, A. Tunnermann, B.N. Chichkov, B. Wellegehausen, H. Welling, J. Opt. Soc. Am. B 14, 2716 (1997)

    ADS  Google Scholar 

  37. Dieter Bäuerle, Laser chemical processing: an overview to the 30th anniversary. Appl. Phys. A 101, 447–459 (2010)

    ADS  Google Scholar 

  38. R. Kullmer, D. Bauerle, Appl. Phys. A 43, 277 (1987)

    Google Scholar 

  39. M. Mullenborn, H. Dirac, J.W. Petersen, S. Bouwstra, Sens. Actuators A 52, 121 (1996)

    Google Scholar 

  40. D.J. Ehrlich, Appl. Surf. Sci. 69, 115 (1993)

    ADS  Google Scholar 

  41. G. Wysocki, J. Heitz, D. Bäuerle, Near-field optical nanopatterning of crystalline silicon. Appl. Phys. Lett. 84, 2025 (2004)

    ADS  Google Scholar 

  42. D. Bauerle, Chemical Processing with Lasers (Springer Series in Materials Science, Springer, Berlin, 1986)

    Google Scholar 

  43. D. Bauerle, in Proceedings MRS Symposium, Laser Diagnostics and Photochemical Processing for Semi-Conductor Devices ed. By R.M. Osgood et al., Boston, vol. 17 (Elsevier, Amsterdam, 1983), 19 (1982)

    Google Scholar 

  44. W. Krauter, D. Bauerle, F. Fimberger, Appl. Phys. A 31, 13 (1983)

    ADS  Google Scholar 

  45. R.J. von Gutfeld, R.T. Hodgson, Appl. Phys. Lett. 40, 352 (1982)

    ADS  Google Scholar 

  46. D.V. Podlesnik, H.H. Gilgen, R.M. Osgood, Appl. Phys. Lett. 45, 563 (1984)

    ADS  Google Scholar 

  47. F.E. Livingston, H. Helvajian, MRS Bull. 32, 40 (2007)

    Google Scholar 

  48. F.E. Livingston, P.M. Adams, H. Helvajian, Appl. Phys. A 89, 97 (2007)

    Google Scholar 

  49. D. Brodoceanu, G.D. Cole, N. Kiesel, M. Aspelmeyer, D. Bäuerle, Femtosecond laser fabrication of high reflectivity micromirrors. Appl. Phys. Lett. 97, 041104 (2010)

    ADS  Google Scholar 

  50. S. Gigan, H.R. Bohm, M. Paternostro, F. Blaser, G. Langer, J.B. Hertzberg, K.C. Schwab, D. Bäuerle, M. Aspelmeyer, A. Zeilinger, Nature 444, 67 (2006)

    ADS  Google Scholar 

  51. S. Maruo, O. Nakamura, S. Kawata, Opt. Lett. 22, 132 (1997)

    ADS  Google Scholar 

  52. S. Kawata, H.-B. Sun, T. Tanaka, K. Takada, Nature 412, 697 (2001)

    ADS  Google Scholar 

  53. B.H. Cumpston, S.P. Ananthavel, S. Barlow, D.L. Dyer, J.E. Ehrlich, L.L. Erskine, A.A. Heikal, S.M. Kuebler, I.-Y.S. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X.-L. Wu, S.R. Marder, J.W. Perry, Nature 398, 51 (1999)

    ADS  Google Scholar 

  54. H. Sun et al., Opt. Lett. 26, 325 (2001)

    ADS  Google Scholar 

  55. J. Serbin, A. Egbert, A. Ostendorf, B.N. Chichkov, R.H.G. Domann, J. Schulz, C. Cronauer, L. Frohlich, M. Popall, Opt. Lett. 28, 301 (2003)

    ADS  Google Scholar 

  56. M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, C. Soukoulis, Nat. Mater 3, 444 (2004)

    ADS  Google Scholar 

  57. J. Serbin, A. Ovsianikov, B. Chichkov, Opt. Express 12, 5221 (2004)

    ADS  Google Scholar 

  58. K. Seet, V. Mizeikis, S. Juodkazis, H. Misawa, Appl. Phys. A 82, 683 (2006)

    ADS  Google Scholar 

  59. R. Böhme, S. Pissadakis, M. Ehrhardt, T. Rudolph, D. Ruthe, K. Zimmer, Conf. Ser. 59, 173 (2007)

    ADS  Google Scholar 

  60. Y. Kawaguchi, H. Niino, T. Sato, A. Narazaki, R. Kurosaki, J. Phys. Conf. Ser. 59, 380 (2007)

    ADS  Google Scholar 

  61. G. Kopitkovas, T. Lippert, J. Venturini, C. David, A. Wokaun, J. Phys. Conf. Ser. 59, 526 (2007)

    ADS  Google Scholar 

  62. C. Vass, K. Osvay, B. Hopp, Z. Bor, Appl. Phys. A 87, 611 (2007)

    ADS  Google Scholar 

  63. D.J. Hwang, T. Choi, C.P. Grigoropoulos, Appl. Phys. A 79, 605 (2004)

    ADS  Google Scholar 

  64. J. Wang, H. Niino, A. Yabe, Appl. Phys. A 68, 111 (1999)

    ADS  Google Scholar 

  65. J.P. Sylvestre, A.V. Kabashin, E. Sacher, M. Meunier, J.H.T. Luong, J. Am. Chem. Soc. 126, 7176 (2004)

    Google Scholar 

  66. S. Masai, K. Hirata, T. Sakka, Y.H. Ogata, J. Phys. Conf. Ser. 59, 198 (2007)

    ADS  Google Scholar 

  67. N.V. Tarasenko, A.V. Butsen, A.A. Nevar, Appl. Phys. A 93, 837 (2008)

    ADS  Google Scholar 

  68. A. Abdolvand, S.Z. Khan, Y. Yuan, P.L. Crouse, M.J.J. Schmidt, M. Sharp, Z. Liu, L. Li, Appl. Phys. A 91, 365 (2008)

    ADS  Google Scholar 

  69. N. Takada, T. Sasaki, K. Sasaki, Appl. Phys. A 93, 833 (2008)

    ADS  Google Scholar 

  70. I. Umezu, H. Minami, H. Senoo, A. Sugimura, J. Phys. Conf. Ser. 59, 392 (2007)

    ADS  Google Scholar 

  71. N.G. Semaltianos, S. Logothetidis, W. Perrie, S. Romani, R.J. Potter, M. Sharp, P. French, G. Dearden, K.G. Watkins, Appl. Phys. A 94, 641 (2009)

    ADS  Google Scholar 

  72. I. Elaboudi, S. Lazare, C. Belin, D. Talaga, C. Labrugère, Appl. Phys. A 93, 827 (2008)

    ADS  Google Scholar 

  73. D. W. Oxtoby, Homogenous nucleation: theory and experiment. J. Phys.: Condens. Matter. 4, 7627 (1992)

    Google Scholar 

  74. H. Fujii, T. Matsumoto, S. Izutani, S. Kiguchi, K. Nogi, Surface tension of molten silicon measured by microgravity oscilating drop method and improved sessile drop method. Acta Materialia 54, 1221 (2006)

    Google Scholar 

  75. C. C. Maser, Vapor-pressure data extrapolated to 1000 atmospheres (\(1.01\sim 108\) N/m2) for 13 refractory materials with low thermal absorption cross sections, Nasa TN D-4147. (National Aeronautics and Space Administration, 1967)

    Google Scholar 

  76. Leon Gunther, A comprehensive treatment of classical nucleation in a supercooled or superheated fluid. Am. J. Phys. 71(4), 351 (2003)

    MathSciNet  ADS  Google Scholar 

  77. R.F. Strickland-Constable, Kinetics and Mechanism of Crystallization (Academic Press, London, 1968)

    Google Scholar 

  78. I. Nicolae, M. Popescu, Simulation of nanoparticle formation by condensation from the gaseous phase. J. Optoelectron. Adv. Mater. 10, 2470–2473 (2008)

    Google Scholar 

  79. S. Arcidiacono, N.R. Bieri, D. Poulikakos, C.P. Grigoropoulos, On the coalescence of gold nanoparticles. Int. J. Multiph. Flow 30, 979–994 (2004)

    MATH  Google Scholar 

  80. J. Antunez-Garcia, S. Mejia-Rosales, E. Perez-Tijerina, J. Martin, M. Carrizales, M. Jose-Yacaman, Coalescence and collisions of gold nanoparticles. Materials 4, 368–379 (2011)

    ADS  Google Scholar 

  81. A. Marcu, C. Grigoriu, K. Yatsui, Particles interaction with obstacles in pulsed laser deposition. Appl. Surf. Sci. 248, 466–469 (2005)

    ADS  Google Scholar 

  82. A. Marcu, C. Grigoriu, K. Yatsui, Particles movement and surface quality in PLD/PR systems. Appl. Surf. Sci. 252, 4733 (2006)

    ADS  Google Scholar 

  83. A. Marcu, C. Grigoriu, K. Yatsui, Simplified model for RMS variation in pulsed laser deposition, ed. by V.I. Vlad, Sixth conference on optics, ROMOPTO 2000, Proc. SPIE 4430, 241 (2000)

    Google Scholar 

  84. A. Marcu, C. Grigoriu, W. Jiang, K. Yatsui, Pulsed laser deposition of YBCO thin films in a shadow mask configuration. Thin Solid Films 360, 166–172 (2000)

    ADS  Google Scholar 

  85. A. Marcu, M. Goyat, T. Yanagida, T. Kawai, ZnO nanowire morphology control in pulsed laser deposition. J. Optolelectron. Adv. Mater. 11, 421–426 (2009)

    Google Scholar 

  86. A. Marcu, C. Grigoriu, W. Jiang, K. Yatsui, Plume behaviour and thin film deposition by laser ablation using an hellicoidal shadow mask, eds. by T. Necsoiu, M.R.-D.C. Dumitras, Sixth Symposium of Optoelectronics, Proc. SPIE 4068, 577 (1999)

    Google Scholar 

  87. A. Marcu, C. Grigoriu, C.P. Lungu, T. Yanagida, T. Kawai, Ablation particles parameters influences on VLS oxide nanowire growing. Phys. E 44, 1071–1073 (2012)

    Google Scholar 

  88. A. Marcu, C. Grigoriu, W. Jiang, K. Yatsui, Deposition parameters influence in pulsed laser deposition by plume reflection, eds. by O. Iancu, A. Manea, D. Cojoc, Advanced topics in optoelectronics, microelectronics and nanotechnologies, Proc. SPIE 5227, 312–317 (2002)

    Google Scholar 

  89. A. Marcu, L. Trupina, R. Zamani, J. Arbiol, C. Grigoriu, J.R. Morante, Catalyst size limitation in vapor-liquid-solid ZnO nanowire growth using pulsed laser deposition. Thin Solid Films 520, 4626–4631 (2012)

    Google Scholar 

  90. A. Marcu, C. Grigoriu, W. Jiang, K. Yatsui, Plume reflection in pulsed laser deposition, eds. by D.C. Dumitras, M. Dinescu, V.I. Konov, Advanced Laser Technologies, Proc. SPIE 4762, 210–214 (2001)

    Google Scholar 

  91. R.W. Boyd, Nonlinear Optics, 3rd edn. (Academic Press Inc, Amsterdam, 2008)

    Google Scholar 

  92. S. Chelkowski, A.D. Bandrauk, Above-threshold ionization electron spectra from a dissociating molecular ion calculated using the wave-function splitting technique. Laser Phys. 7(3), 797 (1997)

    Google Scholar 

  93. A.D. Bandrauk, Molecules in Laser Fields (Marcel Dekker, New York, 1993)

    Google Scholar 

  94. P. Gibbon, Short Pulse Laser Interaction with Matter (Imperial College Press, London, 2005)

    Google Scholar 

  95. L.V. Keldysh, Ionization in the field of a strong electromagnetic wave. Sov. Phys. JETP 20, 1307 (1965)

    MathSciNet  Google Scholar 

  96. M. Uiberacker, T. Uphues, M. Schultze, A.J. Verhoef, V.S. Yakovlev, M.F. Kling, J. Rauschenberger, M.N. Kabachnik, H. Schröder, M. Lezius, K.L. Kompa, H.-G. Muller, M.J.J. Vrakking, S. Hendel, U. Kleineberg, U. Heinzmann, M. Drescher, F. Krausz, Attosecond real-time observation of electron tunnelling in atoms. Nature 446, 627–632 (2007)

    ADS  Google Scholar 

  97. B. Dromey, S. Kar, M. Zepf, P. Foster, The plasma mirror- A subpicosecond optical switch for ultrahigh power lasers. Rev. Sci. Inst. 75, 645 (2004)

    ADS  Google Scholar 

  98. Y. Nomura, L. Veisz, K. Schmid, T. Wittmann, J. Wild, F. Krausz, Timeresolved reflectivity measurements on a plasma mirror with few-cycle laser pulses. New J. Phys. 9, 9 (2007)

    ADS  Google Scholar 

  99. V.L. Ginzburg, The Propagation of Electromagnetic Waves in Plasmas (Pergamon, New York, 1964)

    Google Scholar 

  100. F. Brunel, Not-so-resonant, resonant absorption. Phys. Rev. Lett. 59, 52 (1987)

    ADS  Google Scholar 

  101. F. Quéré, C. Thaury, P. Monot, S. Dobosz, P. Martin, J.-P. Geindre, P. Audebert, Coherent wake emission of high-order harmonics from overdense plasmas. Phys. Rev. Lett. 96, 125004 (2006)

    ADS  Google Scholar 

  102. F. Quéré, C. Thaury, J.-P. Geindre, G. Bonnaud, P. Monot, P. Martin, Phase properties of laser high-order harmonics generated on plasma mirrors. Phys. Rev. Lett. 100, 095004 (2008)

    ADS  Google Scholar 

  103. C. Thaury, H. George, F. Quéré, R. Loch, J.-P. Geindre, P. Monot, P. Martin, Coherent dynamics of plasma mirrors. Nat. Phys. 4, 631–634 (2008)

    Google Scholar 

  104. T. Baeva, S. Gordienko, A. Pukhov, Theory of high-order harmonic generation in relativistic laser interaction with overdense plasma. Phys. Rev. E 74, 046404 (2006)

    ADS  Google Scholar 

  105. G.D. Tsakiris, K. Eidmann, J. Meyer-ter Vehn, F. Krausz, Route to intense single attosecond pulses. New J. Phys. 8, 19 (2006)

    ADS  Google Scholar 

  106. S. Gordienko, A. Pukhov, O. Shorokhov, T. Baeva, Relativistic doppler effect: universal spectra and zeptosecond pulses. Phys. Rev. Lett. 93, 115002 (2004)

    ADS  Google Scholar 

  107. From Rainer Hörlein, Investigation of the XUV Emission from the Interaction of Intense Femtosecond Laser Pulses with Solid Targets, PhD thesis, Munchen, 2008

    Google Scholar 

  108. U. Teubner, K. Eidmann, U. Wagner, U. Andiel, F. Pisani, G.D. Tsakiris, K. Witte, J. Meyer-ter Vehn, T. Schlegel, E. Förster, Harmonic emission from the rear side of thin overdense foils irradiated with intense ultrashort laser pulses. Phys. Rev. Lett. 92, 185001 (2004)

    ADS  Google Scholar 

  109. Z.-M. Sheng, K. Mima, J. Zhang, H. Sanuki, Emission of electromagnetic pulses from laser wake fields through linear mode conversion. Phys. Rev. Lett. 94, 095003 (2005)

    ADS  Google Scholar 

  110. B. Dromey, S. Rykovanov, D. Adams, R. Hörlein, Y. Nomura, P.S. Foster, S. Kar, K. Markey, D. Neely, M. Geissler, G.D. Tsakiris, M. Zepf, Tuneable enhancement of high harmonic emission from laser solid interactions. Phys. Rev. Lett. 102, 225002 (2009)

    ADS  Google Scholar 

  111. C. Thaury, F. Quéré, J.-P. Geindre, A. Levy, T. Ceccotti, P. Monot, M. Bougeard, F. Reau, P. D’Oliveira, P. Audebert, R. Marjoribanks, P. Martin, Plasma mirrors for ultrahigh-intensity optics. Nat. Phys. 3, 424–429 (2007)

    Google Scholar 

  112. Y. Nomura, R. Hörlein, P. Tzallas, B. Dromey, S. Rykovanov, Z. Major, J. Osterhoff, S. Karsch, L. Veisz, M. Zepf, D. Charalambidis, F. Krausz, G.D. Tsakiris, Attosecond phase-locking of harmonics emitted from laser-produced plasmas. Nat. Phys. 5, 124–128 (2009)

    Google Scholar 

  113. R. Hörlein, Y. Nomura, J. Osterho, Z. Major, S. Karsch, F. Krausz, G.D. Tsakiris, High harmonics from solid surfaces as a source of ultra-bright XUV radiation for experiments. Plasma Phys. Control. Fusion 50, 124002 (2008)

    ADS  Google Scholar 

  114. F. Tavella, Y. Nomura, L. Veisz, V. Pervak, A. Marcinkevicius, F. Krausz, Opt. Lett. 32, 2227 (2007)

    ADS  Google Scholar 

  115. D. Herrmann, L. Veisz, R. Tautz, F. Tavella, K. Schmid, V. Pervak, F. Krausz, Opt. Lett. 34, 2459 (2009)

    ADS  Google Scholar 

  116. P. Heissler, R. Horlein, M. Stafe, J.M. Mikhailova, Y. Nomura, D. Herrmann, R. Tautz, S.G. Rykovanov, I.B. Foldes, K. Varju, F. Tavella, A. Marcinkevicius, F. Krausz, L. Veisz, G.D. Tsakiris, Towards single attosecond pulses using harmonic emission from solid density plasmas, Appl. Phys. B 101, 511–521 (2010)

    Google Scholar 

  117. S. Gordienko, A. Pukhov, O. Shorokhov, T. Baeva, Coherent focusing of high harmonics: A new way towards the extreme intensities. Phys. Rev. Lett. 94, 103903 (2005)

    ADS  Google Scholar 

  118. S.V. Bulanov, N.M. Naumova, F. Pegoraro, Interaction of an ultrashort, relativistically strong laser pulse with an overdense plasma. Phys. Plasmas 1, 745–757 (1994)

    ADS  Google Scholar 

  119. R. Lichters, J. Meyer-ter Vehn, A. Pukhov, Short-pulse laser harmonics from oscillating plasma surfaces driven at relativistic intensity. Phys. Plasmas 3, 3425–3437 (1996)

    ADS  Google Scholar 

  120. D. An der Brügge, A. Pukhov, Propagation of relativistic surface harmonics radiation in free space. Phys. Plasmas 14, 093104 (2007)

    ADS  Google Scholar 

  121. T. Baeva, S. Gordienko, A. Pukhov, Relativistic plasma control for single attosecond x-ray burst generation. Phys. Rev. E 74, 065401 (2006)

    ADS  Google Scholar 

  122. M. Geissler, S. Rykovanov, J. Schreiber, J. Meyer-ter Vehn, G.D. Tsakiris, 3D simulations of surface harmonic generation with few-cycle laser pulses. New J. Phys. 9, 218 (2007)

    ADS  Google Scholar 

  123. D. von der Linde, K. Rzazewski, High-order optical harmonic generation from solid surfaces. Appl. Phys. B 63, 499–506 (1996)

    ADS  Google Scholar 

  124. B. Dromey, S. Kar, C. Bellei, D.C. Carroll, R.J. Clarke, J.S. Green, S. Kneip, K. Markey, S.R. Nagel, P.T. Simpson, L. Willingale, P. McKenna, D. Neely, Z. Najmudin, K. Krushelnick, P.A. Norreys, M. Zepf, Bright multi-keV harmonic generation from relativistically oscillating plasma surfaces. Phys. Rev. Lett. 99, 085001 (2007)

    ADS  Google Scholar 

  125. B. Dromey, M. Zepf, A. Gopal, K. Lancaster, M.S. Wei, K. Krushelnick, M. Tatarakis, N. Vakakis, S. Moustaizis, R. Kodama, M. Tampo, C. Stoeckl, R. Clarke, H. Habara, D. Neely, S. Karsch, P. Norreys, High harmonic generation in the relativistic limit. Nat. Phys. 2, 456–459 (2006)

    Google Scholar 

  126. J. Schwinger, On gauge invariance and vacuum polarization. Phys. Rev. 82, 664–679 (1951)

    MathSciNet  ADS  MATH  Google Scholar 

  127. S. Rykovanov, M. Geissler, J. Meyer-ter Vehn, G.D. Tsakiris, Intense single attosecond pulses from surface harmonics using the polarization gating technique. New J. Phys. 10, 025025 (2008)

    ADS  Google Scholar 

  128. A. Ovsianikov, A. Ostendorf, B.N. Chichkov, Three-dimensional photofabrication with femtosecond lasers for applications in photonics and biomedicine, Appl. Surf. Sci. 253, 6599–6602 (2007)

    Google Scholar 

  129. A. Marcu, C. Grigoriu, W. Jiang, K. Yatsui, Pulsed laser deposition of YBCO thin films in a shadow mask configuration, Thin Solid Films 360, 166–172 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihai Stafe .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stafe, M., Marcu, A., Puscas, N.N. (2014). Material Removal and Deposition by Pulsed Laser Ablation and Associated Phenomena. In: Pulsed Laser Ablation of Solids. Springer Series in Surface Sciences, vol 53. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40978-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40978-3_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40977-6

  • Online ISBN: 978-3-642-40978-3

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics