Skip to main content

Lasers for Pulsed Laser Ablation

  • Chapter
  • First Online:
Pulsed Laser Ablation of Solids

Part of the book series: Springer Series in Surface Sciences ((SSSUR,volume 53))

Abstract

In this chapter, several lasers (e.g. Nd-YAG laser, Ti-sapphire laser, excimer laser, \(\text {CO}_{2}\) laser) are analysed because they are versatile sources of energy in a highly concentrated form, being attractive tools and research instruments for a large variety of research and production fields, and for laser ablation in particular. We present the fundamentals on the operation modes of these lasers (pulsed, CW, tunable), pulse duration (nano, pico, femtosecond range), power and operation wavelength (from near UV to far IR range), emphasizing their best capabilities. As current technology is pushed to ever smaller dimensions, lasers become a truly enabling solution, reducing thermomechanical damage and facilitating heterogeneous integration of components into functional devices. Also, the Q-switched and mode locked lasers are analysed together with the most used methods for their practical operation: mechanical, electro-optical, acousto-optical, methods with saturable absorbers and thin films etc. The knowledge of the laser operation and the parameters is used to control PLA process for different types of solid materials in different ambient conditions. At the end of this chapter several combined irradiation methods (exposure to intense surface plasmon optical near field, the 3D laser lithography etc.) and some effects of pulse duration on the ablation rate are discussed together the projection through microlens array and laser trepanning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. N.M. Bulgakova, A.V. Bulgakov, Appl. Phys. A 73, 199 (2001)

    Article  ADS  Google Scholar 

  2. M. Stafe, I. Vladoiu, I.M. Popescu, Cent. Eur. J. Phys. 6, 327 (2008)

    Article  Google Scholar 

  3. ICALEO Conference Proceedings, 2008

    Google Scholar 

  4. B.N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, A. Tunnermann, Femtosecond, picosecond and nanosecond laser ablation of solids. Appl. Phys. A 63, 109–115 (1996)

    Article  ADS  Google Scholar 

  5. W. Demtroder, Laser Spectroscopy: Basic Concepts and Instrumentation, 2nd edn. (Springer, Berlin, 1996)

    Book  Google Scholar 

  6. C. P. Grigoropoulos, Transport in Laser Microfabrication: Fundamentals and Applications (Cambridge University Press, Cambridge, 2009), ISBN-13 978–0-521-82172-8

    Google Scholar 

  7. J.E. Geusic, H.M. Marcos, L.G. Van Uitert, Laser oscillations in Nd-doped yttrium aluminum, yttrium gallium and gadolinium garnets. Appl. Phys. Lett. 4(10), 182 (1964)

    Article  ADS  Google Scholar 

  8. P.F. Moulton, Spectroscopic and laser characteristics of Ti:\(\text{ Al }_2 \text{ O }_3\). J. Opt. Soc. B 3, 125 (1986)

    Article  ADS  Google Scholar 

  9. N.G. Basov et al., Zh. Eksp. Fiz. i Tekh. Pis’ma. Red. 12, 473 (1970)

    ADS  Google Scholar 

  10. C.P. Christensen, R.W. Waynant, B.J. Feldman, High efficiency microwave discharge XeCl laser. Appl. Phys. Lett. 46, 321 (1985)

    Article  ADS  Google Scholar 

  11. C. Patel, Continuous-wave laser action on vibrational-rotational transitions of CO\(_2 \). Phys. Rev. 136(5A), 1187–1193 (1964)

    Article  ADS  Google Scholar 

  12. S. Szatmari, High-brightness ultraviolet excimer lasers. Appl. Phys. B 58, 211–223 (1994)

    Article  ADS  Google Scholar 

  13. C. Momma, H. Eichmann, H. Jacobs, A. Ttinnermann, H. Welling, B. Wellegehausen, Opt. Lett. 18, 516 (1993)

    Article  ADS  Google Scholar 

  14. K. Mossavi, Th Hofmann, F.K. Tittel, G. Szabo, Opt. Lett. 18, 435 (1993)

    Article  ADS  Google Scholar 

  15. D. Strickland, G. Mourou, Opt. Commun. 56, 219 (1985)

    Article  ADS  Google Scholar 

  16. P. Maine, D. Strickland, P. Bado, M. Pessot, G. Mourou, IEEE J. QE 24, 398 (1988)

    Article  Google Scholar 

  17. C. Sauteret, D. Husson, G. Thiell, S. Seznec, S. Gary, A. Migus, G. Mourou, Opt. Lett. 16, 238 (1991)

    Article  ADS  Google Scholar 

  18. K. Yamakawa, H. Shiraga, Y. Kato, C.P.J. Barry, Opt. Lett. 16, 1593 (1991)

    Article  ADS  Google Scholar 

  19. A.P. Schwarzenbach, T.S. Luk, I.A. McIntyre, U. Johann, A. McPherson, K. Boyer, C.K. Rhodes, Opt. Lett. 11, 499 (1986)

    Article  ADS  Google Scholar 

  20. M.J. Shaw, G. Bialolenker, G.J. Hirst, C.J. Hooker, M.H. Key, A.K. Kidd, J.M.D. Lister, K.E. Hill, G.H.C. New, D.C. Wilson, Opt. Lett. 18, 1320 (1993)

    Article  ADS  Google Scholar 

  21. G. Almasi, S. Szatmari, P. Simon, Opt. Commun. 88, 231 (1992)

    Google Scholar 

  22. M.D. Perry, F.G. Patterson, J. Weston, Opt. Lett. 15, 381 (1990)

    Article  ADS  Google Scholar 

  23. G. Ktihnle, U. Teubner, S. Szatmari, Appl. Phys. B 52, 71 (1990)

    ADS  Google Scholar 

  24. M.M. Mumane, H.C. Kapteyn, R.W. Falcone, Phys. Rev. Lett. 62, 155 (1988)

    ADS  Google Scholar 

  25. C.H. Nam, W. Tighe, E. Valco, S. Suckewer, Appl. Phys. B 50, 275 (1990)

    Article  ADS  Google Scholar 

  26. U. Teubner, G. Kuhnle, F.P. Schafer, Appl. Phys. B 54, 493 (1992)

    Article  ADS  Google Scholar 

  27. J.P. Roberts, A.J. Taylor, P.H.Y. Lee, R.B. Gibson, Opt. Lett. 13, 734 (1988)

    Article  ADS  Google Scholar 

  28. A.J. Taylor, C.R. Tallman, J.P. Roberts, C.S. Lester, T.R. Gosnell, P.H.Y. Lee, G.A. Kyrala, Opt. Lett. 15, 39 (1990)

    Article  ADS  Google Scholar 

  29. T.S. Luk, A. McPherson, G. Gibson, K. Boyer, C.K. Rhodes, Opt. Lett. 14, 1113 (1989)

    Article  ADS  Google Scholar 

  30. G. Almasi, S. Szatari, P. Simon, Opt. Commun. 88, 231 (1992)

    Article  ADS  Google Scholar 

  31. S. Seznec, C. Sauteret, S. Gary, E. Bechir, J.L. Bocher, A. Migus, Opt. Commun. 87, 331 (1992)

    Article  ADS  Google Scholar 

  32. C.K. Rhodes (ed.), ‘Excimer Lasers’, Topics Appl. Phys. 30, Springer, Berlin, Heidelberg (1979)

    Google Scholar 

  33. I.A. McIntyre, C.K. Rhodes, J. Appl. Phys. 69, R1 (1991)

    Article  ADS  Google Scholar 

  34. S. Szatmari, In Dye Lasers 25 Years, ed. by M. Stuke, Topics Appl. Phys. 70, 129 (Springer, Berlin, Heidelberg 1992)

    Google Scholar 

  35. W.T. Silfvast, Laser Fundamentals (Cambridge University Press, Cambridge, 2000)

    Google Scholar 

  36. W.S.C. Chang, Principles of Lasers and Optics (Cambridge University Press, Cambridge, 2005)

    Book  Google Scholar 

  37. Sapphire Laser’, R. Ell, U. Morgner, F.X. Kärtner, Generation of 5-fs pulses and octave-spanning spectra directly from a Ti : sapphire laser. Opt. Lett. 26, 373–375 (2001)

    Article  ADS  Google Scholar 

  38. D. Bauerle, Laser Processing and Chemistry (Springer, Berlin, 2000)

    Book  Google Scholar 

  39. M. von Allmen, A. Blatter, Laser-Beam Interactions with Materials (Springer, Berlin, 1995)

    Book  Google Scholar 

  40. M. Stafe, C. Negutu, A. Ducariu, Pulsed laser ablated craters in aluminium in air and aqueous environments. Romanian Reports in Physics 64, 155–162 (2012)

    Google Scholar 

  41. M. Stafe, I. Vladoiu, C. Negutu, I.M. Popescu, Sci. Bull. Univ. “Politehnica” Bucharest, Series A: Appl. Math.Phys. 71, 73 (2009)

    Google Scholar 

  42. M. Stafe, C. Negutu, N.N. Puscas, I.M. Popescu, Pulsed laser ablation of solids. Rom. Rep. Phys. 62, 758–770 (2010)

    Google Scholar 

  43. I. Vladoiu, M. Stafe, C. Neguţu, I.M. Popescu, Sci. Bull. Univ. “Politehnica” Bucharest, Series A: Appl. Math.Phys. 70, 119 (2008)

    Google Scholar 

  44. M. Stafe, C. Negutu, I.M. Popescu, Theoretical determination of the ablation rate of metals in multiple-nanosecond laser pulses irradiation regime. Appl. Surf. Sci. 253, 6353 (2007)

    Article  ADS  Google Scholar 

  45. S.I. Anisimov, M.I. Tribeloskii, G. Ya, Epelobaum: Sov. Phys.- JETP 51, 802 (1980)

    ADS  Google Scholar 

  46. Karl-Heinz Leitz, Metal Ablation with Short and Ultrashort Laser Pulses. Physics Procedia 12, 230–238 (2011)

    Article  Google Scholar 

  47. R. Stoian, D. Ashkenasi, A. Rosenfeld, M. Wittmann, R. Kelly, E.E.B. Campbell, The dynamics of ion expulsion in ultrashort pulse laser sputtering of Al\(_{2}\)O\(_{3}\). Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. At. 166–167, 682–690 (2000)

    Article  Google Scholar 

  48. F. Dausinger, H. Hugel, V.I. Konov, Micromachining with ultrashort laser pulses: from basic understanding to technical applications, ALT’02 international conference on advanced laser technologies. H.P. Weber, V.I. Konov, T. Graf (eds.), Proc. SPIE 5147, 106 (2003)

    Google Scholar 

  49. Dieter Bäuerle, Laser chemical processing: an overview to the 30th anniversary. Appl. Phys. A 101, 447–459 (2010)

    Article  ADS  Google Scholar 

  50. M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1980)

    Google Scholar 

  51. D. Melville, R. Blaikie, Opt. Express 13, 2127 (2005)

    Article  ADS  Google Scholar 

  52. S.Y. Chou, P.R. Krauss, P.J. Renstrom, Science 272, 85 (1996)

    Article  ADS  Google Scholar 

  53. N. Tetreault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Pérez-Willard, S. John, M. Wegener, and G. A. Ozin, Adv. Mater. (Weinheim, Ger.) 18, 457 (2006)

    Google Scholar 

  54. K. Busch, G. von Freymann, S. Linden, S.F. Mingaleev, L.T.M. Wegener, Phys. Rep. 444, 101 (2007)

    Article  ADS  Google Scholar 

  55. Saulius Juodkazis, Vygantas Mizeikis, Hiroaki Misawa, Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications. J. Appl. Phys. 106, 051101 (2009)

    Article  ADS  Google Scholar 

  56. M. Qi, E. Lidorikis, P. Rakich, S. Johnson, J. Joannopoulos, E. Ippen, H. Smith, Nature 429, 538 (2004)

    Article  ADS  Google Scholar 

  57. V.S. Amaratunga, H.T. Hattori, M. Premaratne, H.H. Tan, C. Jagadish, J. Opt. Soc. Am. B 25, 1532 (2008)

    Article  ADS  Google Scholar 

  58. I. Tarhan, G.H. Watson, Phys. Rev. Lett. 76, 315 (1996)

    Article  ADS  Google Scholar 

  59. Alvaro Blanco, Emmanuel Chomski, Serguei Grabtchak, Marta Ibisate, Sajeev John, Stephen W. Leonard, Cefe Lopez, Francisco Meseguer, Hernan Miguez, Jessica P. Mondia, Geoffrey A. Ozin, Ovidiu Toader, Henry M. van Driel, Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres. Nature 405, 437 (2000)

    Article  ADS  Google Scholar 

  60. V. Mizeikis, I. Mikulskas, R. Tomasiunas, S.J.S. Matsuo, H. Misawa, Jpn. J. Appl. Phys., Part 1 43, 3643 (2004)

    Article  Google Scholar 

  61. M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, C. Soukoulis, Nat. Mat. 3, 444 (2004)

    Article  Google Scholar 

  62. M. Deubel, M. Wegener, A. Kaso, Appl. Phys. Lett. 85, 1895 (2004)

    Article  ADS  Google Scholar 

  63. H. Sun et al., Opt. Lett. 26, 325 (2001)

    Article  ADS  Google Scholar 

  64. H.B. Sun, V. Mizeikis, Y. Xu, S. Juodkazis, J.Y. Ye, S. Matsuo, H. Misawa, Appl. Phys. Lett. 79, 1 (2001)

    Article  ADS  Google Scholar 

  65. V. Mizeikis, K.K. Seet, S. Juodkazis, H. Misawa, Three-dimensional woodpile photonic crystal templates for the infrared spectral range. Opt. Lett. 29, 2061 (2004)

    Article  ADS  Google Scholar 

  66. F.E. Livingston, H. Helvajian, MRS Bull. 32, 40 (2007)

    Article  Google Scholar 

  67. F.E. Livingston, P.M. Adams, H. Helvajian, Appl. Phys. A 89, 97 (2007)

    Article  Google Scholar 

  68. K.K. Seet, V. Mizeikis, S. Juodkazis, H. Misawa, Appl. Phys. Lett. 88, 221101 (2006)

    Article  ADS  Google Scholar 

  69. K.K. Seet, V. Mizeikis, S. Matsuo, S. Juodkazis, H. Misawa, Adv. Mater. 17, 541 (2005)

    Article  Google Scholar 

  70. J. Serbin, M. Gu, Adv. Mater. 18, 221 (2006)

    Article  Google Scholar 

  71. J. Serbin, A. Egbert, A. Ostendorf, B.N. Chichkov, R.H.G. Domann, J. Schulz, C. Cronauer, L. Frohlich, M. Popall, Opt. Lett. 28, 301 (2003)

    Article  ADS  Google Scholar 

  72. M. Thiel, M. Decker, M. Deubel, M. Wegener, S. Linden, G. Freymann, Adv. Mater. 19, 207 (2007)

    Article  Google Scholar 

  73. T. Kondo, S. Matsuo, S. Juodkazis, H. Misawa, Appl. Phys. Lett. 79, 725 (2001)

    Article  ADS  Google Scholar 

  74. T. Kondo, S. Matsuo, S. Juodkazis, V. Mizeikis, H. Misawa, Appl. Phys. Lett. 82, 2758 (2003)

    Article  ADS  Google Scholar 

  75. Gregor Langer, PhD thesis, ‘Micro- and Nanopatterning of Surfaces by Means of Colloidal Monolayers’ (2005)

    Google Scholar 

  76. B. Lukyanchuk (ed.), Laser Cleaning. (World Scientific Publishing Company, Singapore 2002)

    Google Scholar 

  77. D. Bauerle, J.D. Pedarnig, I. Vrejoiu, M. Peruzzi, D.G. Matei, D. Brodoceanu, Laser processing and chemistry: applications in nanopatterning, material synthesis and biotechnology, Rom. Rep. Phys. 57, 935–952 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihai Stafe .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stafe, M., Marcu, A., Puscas, N.N. (2014). Lasers for Pulsed Laser Ablation. In: Pulsed Laser Ablation of Solids. Springer Series in Surface Sciences, vol 53. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40978-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40978-3_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40977-6

  • Online ISBN: 978-3-642-40978-3

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics