Skip to main content

Lineare faseroptische Effekte

  • Chapter
  • First Online:
  • 4591 Accesses

Zusammenfassung

Faseroptische Effekte werden als linear bezeichnet, wenn sie nicht von der Amplitude der elektromagnetischen Felder und damit nicht von der Leistung der Lichtwellen in der Glasfaser abhängen. Ein weiteres Kennzeichen linearer Effekte ist, dass bei der Ausbreitung der Lichtwellen in der Faser keine neuen Frequenzen oder Spektralanteile entstehen.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Literatur

  1. G. Grau, W. Freude, Optische Nachrichtentechnik, 3. Aufl. (Springer, Berlin, 1991)

    Book  Google Scholar 

  2. U. Scherz, L. Bergmann, C. Schaefer, Grundlagen der Festkörperphysik, in Festkörper, Hrsg. von R. Kassing. Lehrbuch der Experimentalphysik, Bd. 6, 2. Aufl. (de Gruyter, Berlin, 2005), 3–110

    Google Scholar 

  3. D. Griscom, Optical properties and structure of defects in silica glass. J. Ceram. Soc. Jpn. 99(10), 923–942 (1991)

    Article  Google Scholar 

  4. K. Saito, A.J. Ikushima, Absorption edge in silica glass. Phys. Rev. B 62(13), 8584–8587 (2000)

    Article  Google Scholar 

  5. H. Hosono, Y. Abe, D.L. Kinser, R.A. Weeks, K. Muta, H. Kawazoe, Nature and origin of the 5-eV band in SiO\(_2\):GeO\(_2\) glasses. Phys. Rev. B 46(18), 11445–11451 (1992)

    Article  Google Scholar 

  6. D.N. Nikogosyan, Multi-photon high-excitation-energy approach to fibre grating inscription. Meas. Sci. Technol. 18(1) R1–R18 (2007)

    Article  Google Scholar 

  7. R. Kashyap, Fiber Bragg Gratings, 2. Aufl. (Academic, Burlington, 2010)

    Google Scholar 

  8. T. Izawa, S. Sudo, Optical Fibers: Materials and Fabrication, Hrsg. von T. Okoshi. Advances in Optoelectronics (KTK Scientific, Tokyo, 1987)

    Google Scholar 

  9. D. Hand, P. Russell, Solitary thermal shock waves and optical damage in optical fibers: The fiber fuse. Opt. Lett. 13(9), 767–769 (1988)

    Article  Google Scholar 

  10. Y. Shuto, S. Yanagi, S. Asakawa, M. Kobayashi, R. Nagase, Fiber fuse phenomenon in step-index single-mode optical fibers. IEEE J. Quantum Electron. 40(8), 1113–1121 (2004)

    Article  Google Scholar 

  11. Produktinformation Fa. Corning, Corning HI 1060 FLEX & RC HI 1060 FLEX Specialty Optical Fibers. Techn. Ber. 2010

    Google Scholar 

  12. Y. Jeong, J. Sahu, D. Payne, J. Nilsson, Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power. Opt. Express 12(25), 6088–6092 (2004)

    Article  Google Scholar 

  13. B.C. Stuart, M.D. Feit, A.M. Rubenchik, B.W. Shore, M.D. Perry, Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses. Phys. Rev. Lett. 74(12), 2248–2251 (1995)

    Article  Google Scholar 

  14. G. Mann, J. Vogel, R. Preuß et al., Nanosecond laser damage resistance of differently prepared semi-finished parts of optical multimode fibers. Appl. Surf. Sci. 254(4), 1096–1100 (2007)

    Google Scholar 

  15. J. Limpert, F. Röser, S. Klingebiel et al., The rising power of fiber lasers and amplifiers. IEEE J. Sel. Top. Quantum Electron. 13(3), 537–545 (2007)

    Google Scholar 

  16. K. Tsujikawa, K. Tajima, M. Ohashi, Rayleigh scattering reduction method for silica-bsed optical fiber. J. Lightwave Technol. 18(11), 1528–1532 (2000)

    Article  Google Scholar 

  17. E. Brinkmeyer, Analysis of the backscattering method for single-mode optical fibers. J. Opt. Soc. Am. 70(8), 1010–1012 (1980)

    Article  Google Scholar 

  18. J. Streckert, F. Wilczewski, Relationship between nonlinear effective core area and backscattering capture fraction for singlemode optical fibres. Electron. Lett. 32(8), 760–761 (1996)

    Article  Google Scholar 

  19. M. Nakazawa, Rayleigh backscattering theory for single-mode optical fibers. J. Opt. Soc. Am. 73(9), 1175–1180 (1983)

    Article  Google Scholar 

  20. A. Hartog, M. Gold, On the theory of backscattering in single-mode optical fibers. J. Lightwave Technol. 2(2), 76–82 (1984)

    Article  Google Scholar 

  21. D. Derickson (Hrsg.), Fiber Optic Test and Measurement. Hewlett-Packard Professional Books (Prentice-Hall, Upper Saddle River, 1998)

    Google Scholar 

  22. T. Zhu, X. Bao, L. Chen, H. Liang, Y. Dong, Experimental study on stimulated Rayleigh scattering in optical fibers. Opt. Express 18(22), 22958–22963 (2010)

    Article  Google Scholar 

  23. L. Dong, Stimulated thermal Rayleigh scattering in optical fibers. Opt. Express 21(3), 2642–2656 (2013)

    Article  Google Scholar 

  24. M. Heiblum, J. Harris, Analysis of curved optical waveguides by conformal transformation. IEEE J. Quantum Electron. 11(2), 75–83 (1975)

    Article  Google Scholar 

  25. K. Nagano, S. Kawakami, S. Nishida, Change of the refractive index in an optical fiber due to external forces. Appl. Opt. 17(13), 2080–2085 (1978)

    Article  Google Scholar 

  26. A. Sharma, A.-H. Al-Ani, S. Halme, Constant-curvature loss in monomode fibers: An experimental investigation. Appl. Opt. 23(19), 3297–3301 (1984)

    Article  Google Scholar 

  27. R. Schermer, J. Cole, Improved bend loss formula verified for optical fiber by simulation and experiment. IEEE J. Quantum Electron. 43(10), 899–909 (2007)

    Article  Google Scholar 

  28. D. Marcuse, Curvature loss formula for optical fibers. J. Opt. Soc. Am. 66(3), 216–220 (1976)

    Article  Google Scholar 

  29. H. Renner, R. Ulrich. J.-P., C. Glingener, Einmodenfasern, in Optische Kommunikationstechnik, Hrsg. von E. Voges, K. Petermann (Springer, Berlin, 2002), 81–213

    Google Scholar 

  30. J. Sakai, T. Kimura, Bending loss of propagation modes in arbitrary-index profile optical fibers. Appl. Opt. 17(10), 1499–1506 (1978)

    Article  Google Scholar 

  31. C. Poole, S.-C. Wang, Bend-induced loss for the higher-order spatial mode in a dual-mode fiber. Opt. Lett. 18(20), 1712–1714 (1993)

    Article  Google Scholar 

  32. D. Marcuse, Bend loss of slab and fiber modes computed with diffraction theory. IEEE J. Quantum Electron. 29(12), 2957–2961 (1993)

    Article  Google Scholar 

  33. D. Marcuse, Field deformation and loss caused by curvature of optical fibers. J. Opt. Soc. Am. 66(4), 311–320 (1976)

    Article  Google Scholar 

  34. Produktinformation Fa. Corning. SMF-28e Optical Fiber. Techn. Ber. 2005

    Google Scholar 

  35. S. Tripathi, A. Kumar, R. Varshney, Y. Kumar, E. Marin, J.-P. Meunier, Strain and temperature sensing characteristics of single-mode-multimode-single-mode structures. J. Lightwave Technol. 27(13), 2348–2356 (2009)

    Article  Google Scholar 

  36. A. Siekiera, R. Engelbrecht, L. Buethe, B. Schmauss, Simultaneous sensing of temperature and strain by combined FBG and mode-interference sensors. Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides Conf. (BGPP), Colorado Springs, BTu2E.6, 2012

    Google Scholar 

  37. R. Ryf, S. Randel, A. Gnauck et al., Mode-division multiplexing over 96 km of few-mode fiber using coherent \(6\times6\) MIMO processing. J. Lightwave Technol. 30(4), 521–531 (2012)

    Google Scholar 

  38. H. Bülow, H. Al-Hashimi, B. Schmauss, Coherent multimode-fiber MIMO transmission with spatial constellation modulation. European Conference on Optical Communication (ECOC), Genf, Schweiz, Tu.5.B.3, 2011

    Google Scholar 

  39. A. Siekiera, Faser-Bragg-Gitter in Multimodefasern zur simultanen Messung von Dehnung und Temperatur. Dissertation, Technische Fakultät, Friedrich-Alexander-Universität Erlangen-Nürnberg. In: Optische Hochfrequenztechnik und Photonik; Hrsg. von B. Schmauss, R. Engelbrecht. (Shaker, Aachen, 2015)

    Google Scholar 

  40. B. Konrad, K. Petermann, J. Berger et al., Impact of fiber chromatic dispersion in high-speed TDM transmission systems. J. Lightwave Technol. 20(12), 2129–2135 (2002)

    Google Scholar 

  41. L. Gruener-Nielsen, M. Wandel, P. Kristensen et al., Dispersion-compensating fibers. J. Lightwave Technol. 23(11), 3566–3579 (2005)

    Google Scholar 

  42. G. Agrawal, Nonlinear Fiber Optics, 5. Aufl. (Academic, Amsterdam, 2013)

    Google Scholar 

  43. A. Snyder, W. Young, Modes of optical waveguides. J. Opt. Soc. Am. 68(3), 297–309 (1978)

    Article  Google Scholar 

  44. R. Ulrich, A. Simon, Polarization optics of twisted single-mode fibers. Appl. Opt. 18(13), 2241–2251 (1979)

    Article  Google Scholar 

  45. R. Ulrich, Ursachen der Doppelbrechung, in Optische Kommunikationstechnik, Hrsg. von E. Voges, K. Petermann (Springer, Berlin, 2002), 152–187

    Google Scholar 

  46. C. Poole, R. Wagner, Phenomenological approach to polarisation dispersion in long single-mode fibres. Electron. Lett. 22(19), 1029–1030 (1986)

    Article  Google Scholar 

  47. J. Noda, O. Katsunari, Y. Sasaki, Polarization-maintaining fibers and their applications. J. Lightwave Technol. 4(8), 1071–1089 (1986)

    Article  Google Scholar 

  48. A.W. Snyder, J. Love, Optical Waveguide Theory (Chapman and Hall, London, 1983)

    Google Scholar 

  49. OFS Specialty Photonics Division Produktinformation, Truephase 1550 Fibers. Techn. Ber. 2013

    Google Scholar 

  50. R.H. Stolen, Polarization effects in fiber Raman and Brillouin lasers. IEEE J. Quantum Electron. 15(10), 1157–1160 (1979)

    Article  Google Scholar 

  51. I. Kaminov, Polarization in optical fibers. IEEE J. Quantum Electron. 17(1), 15–22 (1981)

    Article  Google Scholar 

  52. G. Foschini, C. Poole, Statistical theory of polarization dispersion in single mode fibers. J. Lightwave Technol. 9(11), 1439–1456 (1991)

    Article  Google Scholar 

  53. R. Noé, Essentials of Modern Optical Fiber Communication (Springer, Berlin, 2010)

    Book  Google Scholar 

  54. J. Geyer, Effiziente echtzeitfähige Algorithmen zur Implementierung kohärenter optischer Empfänger. Dissertation, Technische Fakultät, Friedrich-Alexander-Universität Erlangen-Nürnberg. In: Optische Hochfrequenztechnik und Photonik; Hrsg. von B. Schmauss, R. Engelbrecht. (Shaker, Aachen, 2011)

    Google Scholar 

  55. Q. Lin, G.P. Agrawal, Vector theory of stimulated Raman scattering and its application to fiber-based Raman amplifiers. J. Opt. Soc. Am. B 20(8), 1616–1631 (2003)

    Article  Google Scholar 

  56. Q. Lin, G.P. Agrawal, Effects of polarization-mode dispersion on fiber-based parametric amplification and wavelength conversion. Opt. Lett. 29(10), 1114–1116 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rainer Engelbrecht .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Engelbrecht, R. (2014). Lineare faseroptische Effekte. In: Nichtlineare Faseroptik. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40968-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40968-4_4

  • Published:

  • Publisher Name: Springer Vieweg, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40967-7

  • Online ISBN: 978-3-642-40968-4

  • eBook Packages: Computer Science and Engineering (German Language)

Publish with us

Policies and ethics