Skip to main content

Raman-Faserlaser

  • Chapter
  • First Online:
Nichtlineare Faseroptik
  • 4598 Accesses

Zusammenfassung

Raman-Faserlaser sind Laser, die auf der Lichtverstärkung durch stimulierte Raman-Streuung in einer Glasfaser basieren. Wie bei jedem Laser entsteht auch in einem Raman-Faserlaser durch frequenzselektive Rückkopplung der optischen Verstärkung eine kontinuierliche Oszillation bei optischen Frequenzen. Die ersten Raman-Faserlaser wurden in den Jahren nach 1970 realisiert, nachdem ausreichend verlustarme Glasfasern zur Verfügung standen. Raman-Faserlaser dienen als leistungsstarke und effiziente faserbasierte Wellenlängenkonverter in spektralen Bereichen, in denen keine anderen effizienten Laserquellen zur Verfügung stehen. In diesem Kapitel werden Aufbau und Merkmale von Raman-Faserlasern vorgestellt. Analytische sowie simulative Verfahren zur Dimensionierung dieses interessanten Lasertyps werden besprochen. Ein Schwerpunkt liegt dabei in den spektralen Eigenschaften von Raman-Faserlasern. Linear polarisierte Raman-Faserlaser mit schmaler spektraler Bandbreite sind gut für eine nachfolgende optische Frequenzverdopplung geeignet, wie am Ende dieses Kapitels am Beispiel der Erzeugung gelber Laserstrahlung gezeigt wird.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  1. R.H. Stolen, E.P. Ippen, A.R. Tynes, Raman oscillation in glass optical waveguide. Appl. Phys. Lett. 20(2), 62–64 (1972)

    Article  Google Scholar 

  2. R. Stolen, The early years of fiber nonlinear optics. J. Lightwave Technol. 26(9), 1021–1031 (2008)

    Article  Google Scholar 

  3. C. Headley, M. Mermelstein, J.-C. Bouteiller, Raman fiber lasers, in Raman Amplifiers for Telecommunications 2, Hrsg. von M. Islam (Springer, New York, 2004), S. 353–382

    Google Scholar 

  4. S.G. Grubb, T.A. Strasser, W.Y. Cheung et al., High power 1.48 μm cascaded Raman laser in germanosilicate fibers. Conference on Optical Amplifiers and Their Applications, Paper SaA4, Davos, 1995

    Google Scholar 

  5. J.W. Nicholson, M.F. Yan, P. Wisk et al., Raman fiber laser with 81 W output power at 1480 nm. Opt. Lett. 35(18), 3069–3071 (2010)

    Google Scholar 

  6. V.R. Supradeepa, J.W. Nicholson, C. Headley, Y.-W. Lee, B. Palsdottir, D. Jakobsen, Cascaded Raman fiber laser at 1480 nm with output power of 104 W. Conference on Fiber Lasers IX: Technology, Systems, and Applications. Conf. Photonics West, Bd. 8237. Proceedings of SPIE - International Society for Optical Engineering, San Francisco, 82370J, 2012

    Google Scholar 

  7. V. Supradeepa, J. Nicholson, K. Feder, Continuous wave Erbium-doped fiber laser with output power of>100 W at 1550 nm in-band core-pumped by a 1480 nm Raman fiber laser. Conference on Lasers Electro-Optics (CLEO), San Jose, CM2N.8, 2012

    Google Scholar 

  8. L. Zenteno, High-power double-clad fiber lasers. J. Lightwave Technol. 11(9), 1435–1446 (1993)

    Article  Google Scholar 

  9. A. Tünnermann, T. Schreiber, F. Röser et al., The renaissance and bright future of fibre lasers. J. Phys. B At. Mol. Opt. Phys. 38(9), 681–693 (2005)

    Google Scholar 

  10. J. Limpert, F. Röser, S. Klingebiel et al., The rising power of fiber lasers and amplifiers. IEEE J. Sel. Topics Quantum Electron. 13(3), 537–545 (2007)

    Google Scholar 

  11. J.W. Dawson, M.J. Messerly, R.J. Beach et al., Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power. Opt. Express 16(17), 13240–13266 (2008)

    Google Scholar 

  12. E. Dianov, M. Grekov, I. Bufetov et al., CW high power 1.24 μm and 1.48 μm Raman lasers based on low loss phosphosilicate fibre. Electron. Lett. 33(18), 1542–1544 (1997)

    Google Scholar 

  13. Produktinformation Fa. Corning. Corning HI 1060 FLEX & RC HI 1060 FLEX Specialty Optical Fibers. Techn. Ber. 2010

    Google Scholar 

  14. Y. Feng, L. Taylor, D. Bonaccini Calia, Multiwatts narrow linewidth fiber Raman amplifiers. Opt. Express 16(15), 10927–10932 (2008)

    Article  Google Scholar 

  15. Y. Feng, L.R. Taylor, D.B. Calia, 150 W highly-efficient Raman fiber laser. Opt. Express 17(26), 23678–23683 (2009)

    Article  Google Scholar 

  16. R. Engelbrecht, A. Siekiera, R. Bauer, R. Neumann, B. Schmauss, Characterization of Short PM Raman Fiber Lasers with a Small Spectral Bandwidth. Optical Fiber Communication Conference (OFC), Los Angeles, OMQ2, 2011

    Google Scholar 

  17. A. Siekiera, R. Engelbrecht, A. Nothofer, B. Schmauss, Short 17-cm DBR Raman fiber laser with a narrow spectrum. IEEE Photon. Technol. Lett. 24(2), 107–109 (2012)

    Article  Google Scholar 

  18. V. Perlin, H. Winful, Distributed feedback fiber Raman laser. IEEE J. Quantum Electron 37(1), 38–47 (2001)

    Article  Google Scholar 

  19. Y. Hu, N. Broderick, Improved design of a DFB Raman fibre laser. Opt. Commun. 282(16), 3356–3359 (2009)

    Article  Google Scholar 

  20. P. Westbrook, K. Abedin, J. Nicholson, T. Kremp, J. Porque, Raman fiber distributed feedback lasers. Opt. Lett. 36(15), 2895–2897 (2011)

    Article  Google Scholar 

  21. J. Shi, S.-u. Alam, M. Ibsen, Highly efficient Raman distributed feedback fibre lasers. Opt. Express 20(5), 5082–5091 (2012)

    Article  Google Scholar 

  22. Y.-G. Han, C.-S. Kim, J. Kang, U.-C. Paek, Y. Chung, Multiwavelength Raman fiber-ring laser based on tunable cascaded long-period fiber gratings. IEEE Photon. Technol. Lett. 15(3), 383–385 (2003)

    Article  Google Scholar 

  23. C.-S. Kim, R. Sova, J. Kang, Tunable multi-wavelength all-fiber Raman source using fiber Sagnac loop filter. Opt. Commun. 218(4–6), 291–295 (2003)

    Article  Google Scholar 

  24. J. Schröder, S. Coen, F. Vanholsbeeck, T. Sylvestre, Passively mode-locked Raman fiber laser with 100 GHz repetition rate. Opt. Lett. 31(23), 3489–3491 (2006)

    Article  Google Scholar 

  25. S. Turitsyn, S. Babin, A. El-Taher et al., Random distributed feedback fibre laser. Nature Photon. 4(4), 231–235 (2010)

    Google Scholar 

  26. Produktinformation Fa. OFS Specialty Fibers. PM-Raman Polarization-Maintaining Raman Fiber. Techn. Ber. 2008

    Google Scholar 

  27. M. Rini, I. Cristiani, V. Degiorgio, Numerical modeling and optimization of cascaded CW Raman fiber lasers. IEEE J. Quantum Electron 36(10), 1117–1122 (2000)

    Article  Google Scholar 

  28. S.D. Jackson, P.H. Muir, Theory and numerical simulation of nth-order cascaded Raman fiber lasers. J. Opt. Soc. Am. B 18(9), 1297–1306 (2001)

    Article  Google Scholar 

  29. Q. Zujun, Z. Xiaojun, L. Qing, W. Haocheng, Z. Zili, An improved theoretical model of nth-order cascaded Raman fiber lasers. J. Lightwave Technol. 25(6), 1555–1560 (2007)

    Article  Google Scholar 

  30. J. AuYeung, A. Yariv, Theory of CW Raman oscillation in optical fibers. J. Opt. Soc. Am. 69(6), 803–807 (1979)

    Article  Google Scholar 

  31. J. Zhou, J. Chen, X. Li, G. Wu, Y. Wang, Exact analytical solution for Raman fiber laser. IEEE Photon. Technol. Lett. 18(9), 1097–1099 (2006)

    Article  Google Scholar 

  32. U. Ascher, J. Christiansen, R. Russel, Collocation software for boundary-value ODEs. ACM Trans. Math. Softw. 7(2), 209–222 (1981)

    Article  MATH  Google Scholar 

  33. J. Kierzenka, L. Shampine, A BVP solver based on residual control and the MATLAB PSE. ACM Trans. Math. Softw. 27(3), 299–316 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  34. M. Rini, I. Cristiani, V. Degiorgio, A.S. Kurkov, V.M. Paramonov, Experimental and numerical optimization of a fiber Raman laser. Opt. Commun. 203, 139–144 (2002)

    Article  Google Scholar 

  35. A. Othonos, K. Kalli, Fiber Bragg Gratings—Fundamentals and Applications in Telecommunications and Sensing (Artech House, Boston, 1999)

    Google Scholar 

  36. R. Kashyap, Fiber Bragg Gratings, 2. Aufl. (Academic, Burlington, 2010)

    Google Scholar 

  37. K.O. Hill, G. Meltz, Fiber Bragg grating technology fundamentals and overview. J. Lightwave Technol. 15(8), 1263–1276 (1997)

    Article  Google Scholar 

  38. K.O. Hill, Photosensitivity in optical fiber waveguides: From discovery to commercialization. IEEE J. Sel. Top. Quantum Electron. 6(6), 1186–1189 (2000)

    Article  Google Scholar 

  39. J. Skaar, Synthesis and characterization of fiber Bragg gratings, PhD Thesis (The Norwegian University of Science and Technology, Trondheim, 2000)

    Google Scholar 

  40. J.-L. Archambault, S. Grubb, Fiber gratings in lasers and amplifiers. J. Lightwave Technol. 15(8), 1378–1390 (1997)

    Article  Google Scholar 

  41. T. Erdogan, Fiber grating spectra. J. Lightwave Technol. 15(8), 1277–1294 (1997)

    Article  Google Scholar 

  42. J. Skaar, L. Wang, T. Erdogan, On the synthesis of fiber Bragg gratings by layer peeling. IEEE J. Quantum Electron. 37(2), 165–173 (2001)

    Article  Google Scholar 

  43. K.O. Hill, Y. Fujii, D.C. Johnson, B.S. Kawasaki, Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication. Appl. Phys. Lett. 32(10), 647–649 (1978)

    Article  Google Scholar 

  44. G. Meltz, W.W. Morey, W.H. Glenn, Formation of Bragg gratings in optical fibers by a transverse holographic method. Opt. Lett. 14(15), 823–825 (1989)

    Article  Google Scholar 

  45. H. Hosono, Y. Abe, D.L. Kinser, R.A. Weeks, K. Muta, H. Kawazoe, Nature and origin of the 5-eV band in SiO2:GeO2glasses. Phys. Rev. B 46(18), 11445–11451 (1992)

    Article  Google Scholar 

  46. D.N. Nikogosyan, Multi-photon high-excitation-energy approach to fibre grating inscription. Meas. Sci. Technol. 18(1), R1–R18 (2007)

    Article  Google Scholar 

  47. K.O. Hill, B. Malo, F. Bilodeau, D.C. Johnson, J. Albert, Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask. Appl. Phys. Lett. 62(10), 1035–1037 (1993)

    Article  Google Scholar 

  48. J.-L. Archambault, L. Reekie, P. Russell, 100 % reflectivity Bragg reflectors produced in optical fibres by single excimer laser pulses. Electron. Lett. 29(5), 453–455 (1993)

    Article  Google Scholar 

  49. C. Chojetzki, M. Rothhardt, J. Ommer, S. Unger, K. Schuster, H.-R. Mueller, High-reflectivity draw-tower fiber Bragg gratings—Arrays and single gratings of type II. Opt. Eng. 44(6), 1–2 (2005)

    Article  Google Scholar 

  50. Produktinformation Fa. Coherent. BraggStar Industrial Excimer Laser. Techn. Ber. 2008

    Google Scholar 

  51. Produktinformation Fa. Nufern. PM980-XP Polarization Maintaining Telecommunication on Fibers. Techn. Ber. 2013

    Google Scholar 

  52. F. Bilodeau, B. Malo, J. Albert et al., Photosensitization of optical fiber and silica-on-silicon/silica waveguides. Opt. Lett. 18(12), 953–955 (1993)

    Google Scholar 

  53. P. Lemaire, R. Atkins, V. Mizrahi, W. Reed, High pressure H2loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2doped optical fibres. Electron. Lett. 29(13), 1191–1193 (1993)

    Article  Google Scholar 

  54. D. Williams, B. Ainslie, J. Armitage, R. Kashyap, R. Campbell, Enhanced UV photosensitivity in boron codoped germanosilicate fibres. Electron. Lett. 29(1), 45–47 (1993)

    Article  Google Scholar 

  55. M. Konstantaki, G. Tamiolakis, A. Argyris, A. Othonos, A. Ikiades, Effects of Ge concentration, boron co-doping, and hydrogenation on fiber Bragg grating characteristics. Microw. Opt. Technol. Lett. 44(2), 148–152 (2005)

    Article  Google Scholar 

  56. Produktinformation Fa. Nufern. GF1 Photosensitive Single-Mode Low-NA Fiber. Techn. Ber. 2013

    Google Scholar 

  57. Produktinformation Fa. OFS Specialty Fibers. PM-HNLF Polarization-Maintaining Highly Non-Linear Fiber. Techn. Ber. 2008

    Google Scholar 

  58. A. Siekiera, R. Engelbrecht, E. Mueller, B. Schmauss, Fiber-Bragg-Grating writing in highly nonlinear PM fibers for Raman fiber lasers. Conference IEEE/LEOS Winter Topicals, Innsbruck, 2009, S. 243–244

    Google Scholar 

  59. A. Siekiera, R. Engelbrecht, R. Neumann, B. Schmauss, Fiber Bragg gratings in polarization maintaining specialty fiber for Raman fiber lasers. Phys. Proc. 5(2), 671–677 (2010) (Proc. Conf. Laser Assisted Net Shape Engineering, LANE)

    Article  Google Scholar 

  60. S.J. Mihailov, C.W. Smelser, P. Lu et al., Fiber Bragg gratings made with a phase mask and 800-nm femtosecond radiation. Opt. Lett. 28(12), 995–997 (2003)

    Google Scholar 

  61. S. Nolte, A. Tuennermann, Femtosecond laser induced Bragg gratings—Status and prospects. Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides Conference, Karlsruhe, Optical Society of America, BWA2, 2010

    Google Scholar 

  62. J. Canning, N. Groothoff, K. Cook et al., Gratings in structured optical fibres. Laser Chem. 2008, Art. 239417, 1–19 (2008)

    Google Scholar 

  63. A.D. Kersey, M.A. Davis, H.J. Patrick et al., Fiber grating sensors. J. Lightwave Technol. 15(8), 1442–1463 (1997)

    Google Scholar 

  64. Y.-J. Rao, In-fibre Bragg grating sensors. Meas. Sci. Technol. 8(4), 355–375 (1997)

    Article  Google Scholar 

  65. D.-P. Zhou, L. Wei, W.-K. Liu, Y. Liu, J.W.Y. Lit, Simultaneous measurement for strain and temperature using fiber Bragg gratings and multimode fibers. Appl. Opt. 47(10), 1668–1672 (2008)

    Article  Google Scholar 

  66. A. Siekiera, R. Engelbrecht, L. Buethe, B. Schmauss, Simultaneous sensing of temperature and strain by combined FBG and mode-interference sensors. Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides Conference (BGPP), Colorado Springs, BTu2E.6, 2012

    Google Scholar 

  67. A. Siekiera, R. Engelbrecht, L. Buethe, B. Schmauss, Numerical and experimental investigation of a fiber-optic sensor consisting of a fiber Bragg grating in a two-mode fiber for simultaneous sensing of temperature and strain. OPTO 2013 Conference, Nürnberg, AMA Service GmbH, Wunstorf, 2013, S. 11–16

    Google Scholar 

  68. A. Siekiera, Faser-Bragg-Gitter in Multimodefasern zur simultanen Messung von Dehnung und Temperatur. Dissertation, Technische Fakultät, Friedrich-Alexander-Universität Erlangen-Nürnberg. In: Optische Hochfrequenztechnik und Photonik; Hrsg. von B. Schmauss, R. Engelbrecht. (Shaker, Aachen, 2015)

    Google Scholar 

  69. J. Hagen, Spektral beherrschter Raman-Faserlaser. Dissertation, Technische Fakultät, Friedrich-Alexander-Universität Erlangen-Nürnberg. In: Optische Hochfrequenztechnik und Photonik; Hrsg. von B. Schmauss, R. Engelbrecht. (Shaker, Aachen, 2007)

    Google Scholar 

  70. J. Hagen, R. Engelbrecht, B. Lins, B. Schmauss, L. Grüner-Nielsen, Optimization of the Power spectral density of Raman-MOPAs using Fiber Bragg gratings with tunable chirp. Optical Fiber Communication Conference (OFC), San Diego, OThN4, 2008

    Google Scholar 

  71. P. Niay, P. Bernage, T. Taunay et al., Polarization selectivity of gratings written in Hi–Bi fibers by the external method. IEEE Photon. Technol. Lett. 7(4), 391–393 (1995)

    Google Scholar 

  72. M. Wuilpart, C. Caucheteur, S. Bette, P. Mégret, M. Blondel, Polarization properties of uniform fiber Bragg gratings written in highly birefringent fibers. Opt. Commun. 247(4–6), 239–245 (2005)

    Google Scholar 

  73. J.-C. Bouteiller, Spectral modeling of Raman fiber lasers. IEEE Photon. Technol. Lett. 15(12), 1698–1700 (2003)

    Article  Google Scholar 

  74. P. Suret, S. Randoux, Influence of spectral broadening on steady characteristics of Raman fiber lasers: From experiments to questions about validity of usual models. Opt. Commun. 237(1–3), 201–212 (2004)

    Article  Google Scholar 

  75. S. Babin, D. Churkin, A. Ismagulov, S. Kablukov, E. Podivilov, Spectral broadening in Raman fiber lasers. Opt. Lett. 31(20), 3007–3009 (2006)

    Article  Google Scholar 

  76. J. Hagen, R. Engelbrecht, O. Welzel, A. Siekiera, B. Schmauss, Numerical modeling of intracavity spectral broadening of Raman fiber lasers. IEEE Photon. Technol. Lett. 19(21), 1759–1761 (2007)

    Article  Google Scholar 

  77. E.G. Turitsyna, S.K. Turitsyn, V.K. Mezentsev, Numerical investigation of the impact of reflectors on spectral performance of Raman fibre laser. Opt. Express 18(5), 4469–4477 (2010)

    Article  Google Scholar 

  78. D.B.S. Soh, J.P. Koplow, S.W. Moore, K.L. Schroder, W.L. Hsu, The effect of dispersion on spectral broadening of incoherent continuous-wave light in optical fibers. Opt. Express 18(21), 22393–22405 (2010)

    Article  Google Scholar 

  79. D. Churkin, S. Smirnov, Numerical modelling of spectral, temporal and statistical properties of Raman fiber lasers. Opt. Commun. 285(8), 2154–2160 (2012)

    Article  Google Scholar 

  80. G. Reider. Photonik, 3. Aufl. (Springer, Wien, 2012)

    Book  Google Scholar 

  81. R. Engelbrecht, B. Trabold, B. Schmauss, Adaptive step-size and error control of the split-step Fourier algorithm in fibers with a large gain. To be published.

    Google Scholar 

  82. D.B.S. Soh, J.P. Koplow, Analysis of spectral broadening of incoherent light in optical fibers with nonzero dispersion. Opt. Eng. 50(11), Art. 111602, 1–16 (2011)

    Article  Google Scholar 

  83. S.A. Babin, V. Karalekas, E.V. Podivilov et al., Turbulent broadening of optical spectra in ultralong Raman fiber lasers. Phys. Rev. A 77(3), Art. 033803 (2008)

    Google Scholar 

  84. L. Bufetov, V. Mashinsky, V. Neustruev et al., Three meter long efficient Germania-based core fiber Raman laser. Conference on Lasers Electro-Optics (CLEO), San Francisco, 2004, S. CMD1

    Google Scholar 

  85. Y. Barmenkov, D. Zalvidea, S. Torres-Peiró, J. Cruz, M. Andrés, Effective length of short Fabry–Perot cavity formed by uniform fiber Bragg gratings. Opt. Express 14(14), 6394–6399 (2006)

    Article  Google Scholar 

  86. H. Kogelnik, C. Shank, Coupled-wave theory of distributed feedback lasers. J. Appl. Phys. 43(5), 2327–2335 (1972)

    Article  Google Scholar 

  87. J. Zyskind, V. Mizrahi, D. DiGiovanni, J. Sulhoff, Short single frequency erbium-doped fibre laser. Electron. Lett. 28(15), 1385–1387 (1992)

    Article  Google Scholar 

  88. J. Kringlebotn, J. Archambault, L. Reekie, D. Payne, Er3+:Yb3+-codoped fiber distributed-feedback laser. Opt. Lett. 19(24), 2101–2103 (1994)

    Article  Google Scholar 

  89. A. Asseh, H. Storoy, J. Kringlebotn et al., 10 cm Yb\(^3+\) DFB fibre laser with permanent phase shifted grating. Electron. Lett. 31(12), 969–970 (1995)

    Google Scholar 

  90. V. Lauridsen, J. Povlsen, P. Varming, Design of DFB fibre lasers. Electron. Lett. 34(21), 2028–2030 (1998)

    Article  Google Scholar 

  91. K. Yelen, M. Zervas, L. Hickey, Fiber DFB lasers with ultimate efficiency. J. Lightwave Technol. 23(1), 32–43 (2005)

    Article  Google Scholar 

  92. J. Shi, S.-U. Alam, M. Ibsen, Highly efficient Raman distributed feedback fibre lasers. Opt. Express 20(5), 5082–5091 (2012)

    Article  Google Scholar 

  93. A. Liem, J. Limpert, H. Zellmer, A. Tünnermann, 100-W single-frequency master-oscillator fiber power amplifier. Opt. Lett. 28(17), 1537–1539 (2003)

    Article  Google Scholar 

  94. Y. Jeong, J. Nilsson, J. Sahu et al., Power scaling of single-frequency ytterbium-doped fiber master-oscillator power-amplifier sources up to 500 W. IEEE J. Sel. Top. Quantum Electron. 13(3), 546–550 (2007)

    Google Scholar 

  95. R. Sutherland,Handbook of Nonlinear Optics (Marcel Dekker, New York, 1996)

    Google Scholar 

  96. G.D. Boyd, D.A. Kleinman, Parametric interaction of focused Gaussian light beams. J. Appl. Phys. 39(8), 3597–3639 (1968)

    Article  Google Scholar 

  97. S.C. Kumar, G.K. Samanta, M. Ebrahim-Zadeh, High-power, single-frequency, continuous-wave second-harmonic-generation of ytterbium fiber laser in PPKTP and MgO:sPPLT. Opt. Express 17(16), 13711–13726 (2009)

    Article  Google Scholar 

  98. R.W. Boyd, Nonlinear Optics, 3. Aufl. (Academic, Amsterdam, 2008)

    Google Scholar 

  99. S. Somekh, A. Yariv, Phase matching by periodic modulation of the nonlinear optical properties. Opt. Commun. 6(3), 301–304 (1972)

    Article  Google Scholar 

  100. A. Szilagyi, A. Hordvik, H. Schlossberg, A quasi-phase-matching technique for efficient optical mixing and frequency doubling. J. Appl. Phys. 47(5), 2025–2032 (1976)

    Article  Google Scholar 

  101. M. Fejer, G. Magel, D.H. Jundt, R. Byer, Quasi-phase-matched second harmonic generation: Tuning and tolerances. IEEE J. Quantum Electron. 28(11), 2631–2654 (1992)

    Article  Google Scholar 

  102. L.E. Myers, R.C. Eckardt, M.M. Fejer, R.L. Byer, W.R. Bosenberg, J.W. Pierce, Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3. J. Opt. Soc. Am. B 12(11), 2102–2116 (1995)

    Article  Google Scholar 

  103. M. Yamada, N. Nada, M. Saitoh, K. Watanabe, First-order quasi-phase matched LiNbO3waveguide periodically poled by applying an external field for efficient blue second-harmonic generation. Appl. Phys. Lett. 62(5), 435–436 (1993)

    Article  Google Scholar 

  104. M. Fallahi, L. Fan, Y. Kaneda et al., 5-W yellow laser by intracavity frequency doubling of high-power vertical-external-cavity surface-emitting laser. IEEE Photon. Technol. Lett. 20(20), 1700–1702 (2008)

    Google Scholar 

  105. C. Hessenius, P. Guinet, M. Lukowski, J. Moloney, M. Fallahi, 589 nm single-frequency VECSEL for sodium guidestar applications. Conference on Vertical External Cavity Surface Emitting Lasers (VECSELs) II, Bd. 824k2, Proceedings of SPIE - International Society for Optical Engineering, San Francisco, 82420E, 2012

    Google Scholar 

  106. H.-J. Eichler, J. Eichler, Laser - Bauformen, Strahlführung, Anwendungen, 7. Aufl. (Springer, Berlin, 2010)

    Google Scholar 

  107. R. Anderson, J. Parrish, The optics of human skin. J. Invest. Dermatol. 77(1), 13–19 (1981)

    Article  Google Scholar 

  108. A. Roggan, M. Friebel, K. Dörschel, A. Hahn, G. Müller, Optical properties of circulating human blood in the wavelength range 400–2500 nm. J. Biomed. Opt. 4(1), 36–46 (1999)

    Article  Google Scholar 

  109. M.B. Wimmershoff, M. Wenig, U. Hohenleutner, M. Landthaler, Die Behandlung von Feuermalen mit dem blitzlampengepumpten gepulsten Farbstofflaser. Ergebnisse aus 5 Jahren klinischer Erfahrung. Hautarzt 52(11), 1011–1015 (2001).

    Article  Google Scholar 

  110. N. Sadick, R. Weiss, The utilization of a new yellow light laser (578 nm) for the treatment of class I red telangiectasia of the lower extremities. Dermatol. Surg. 28(1), 21–25 (2002)

    Google Scholar 

  111. M. Landthaler, U. Hohenleutner, Lasertherapie in der Dermatologie, 2. Aufl. (Springer, Berlin, 2006)

    Google Scholar 

  112. C. Max, S. Olivier, H. Friedman et al., Image improvement from a sodium-layer laser guide star adaptive optics system. Science 277(5332), 1649–1652 (1997)

    Google Scholar 

  113. P. Wizinowich, D. Le Mignant, A. Bouchez et al., The W. M. Keck observatory laser guide star adaptive optics system: Overview. Publ. Astron. Soc. Pac. 118(840), 297–309 (2006)

    Google Scholar 

  114. R. Arsenault, P.-Y. Madec, N. Hubin et al., ESO adaptive optics facility. Conference on Adaptive Optics Systems, Bd. 7015, Proceedings of SPIE - International Society for Optical Engineering 24, Marseille, 2008, S. 701524

    Google Scholar 

  115. R. Arsenault, P.-Y. Madec, J. Paufique et al., ESO adaptive optics facility progress report. Conference on Adaptive Optics Systems III, Bd. 8447, Proceedings of SPIE - International Society for Optical Engineering, Amsterdam, 84470J, 2012

    Google Scholar 

  116. C.S. Gardner, Sodium resonance fluorescence lidar applications in atmospheric science and astronomy. Proc. IEEE 77(3), 408–418 (1989)

    Article  Google Scholar 

  117. R. Holzlöhner, S. Rochester, D. Bonaccini Calia, D. Budker, J. Higbie, W. Hackenberg, Optimization of CW sodium laser guide star efficiency. Astron. Astrophys. 510(1), A20, 1–24 (2010)

    Google Scholar 

  118. L. Pálfalvi, J. Hebling, G. Almási et al., Nonlinear refraction and absorption of Mg doped stoichiometric and congruent LiNbO3. J. Appl. Phys. 95(3), 902–908 (2004)

    Google Scholar 

  119. D. Georgiev, V. Gapontsev, A. Dronov et al., Watts-level frequency doubling of a narrow line linearly polarized Raman fiber laser to 589 nm. Opt. Express 13(18), 6772–6776 (2005)

    Google Scholar 

  120. Y. Feng, W. Hackenberg, D. Bonaccini, S. Chernikov, Multi-watt 589 nm laser by frequency doubling of a fibre Raman MOPA. 2nd EPS-QEOD Europhoton Conference on Solid-State and Fiber Coherent Light Sources, WeE6, Pisa, WeE6, 2006

    Google Scholar 

  121. Y. Feng, L. Taylor, D. Calia, 25 W Ramkan-fiber-amplifier-based 589 nm laser for laser guide star. Opt. Express 17(21), 19021–19026 (2009)

    Article  Google Scholar 

  122. L. Zhang, J. Hu, J. Wang, Y. Feng, Stimulated-Brillouin-scattering-suppressed high-power single-frequency polarization-maintaining Raman fiber amplifier with longitudinally varied strain for laser guide star. Opt. Lett. 37(22), 4796–4798 (2012)

    Article  Google Scholar 

  123. A. Friedenauer, V. Karpov, D. Wei et al., RFA-based 589-nm guide star lasers for ESO VLT, a paradigm shift in performance, operational simplicity, reliability and maintenance. Conference on Adaptive Optics Systems III, Bd. 8447, Proceedings of SPIE - International Society for Optical Engineering, Amsterdam, 84470F, 2012

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rainer Engelbrecht .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Engelbrecht, R. (2014). Raman-Faserlaser. In: Nichtlineare Faseroptik. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40968-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40968-4_10

  • Published:

  • Publisher Name: Springer Vieweg, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40967-7

  • Online ISBN: 978-3-642-40968-4

  • eBook Packages: Computer Science and Engineering (German Language)

Publish with us

Policies and ethics