Skip to main content

Investigation of Engineered Plant Systems

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

  • First Online:
Process and Plant Safety

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

  • 2217 Accesses

Abstract

A process plant functions properly, if the containment (pipework, apparatuses, vessels etc.) of the materials is intact and all parameters, which characterize its state such as temperatures, mass flows, pressures, concentrations etc. are within their design tolerance ranges. A prerequisite is, of course, the correct design of the plant, whose fundamentals were treated in the preceding chapters. It must be pointed out that the tolerance ranges mentioned above can vary with different operational states such as start-up, coast-down and full or partial load.

How safe is safe enough?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Complement of the survival probability (reliability) of Table 9.1.

  2. 2.

    In [3] the word primary failure is used. However, since one does not always refer to a failure, the more general term “primary event” is used here. Often the term “component failure” is applied.

  3. 3.

    The following derivations are carried out for failure rates and apply analogously to unavailabilities as well.

  4. 4.

    Boolean or binary variables and the corresponding functions only adopt two values: 0 or 1.

  5. 5.

    Only the most widely used procedure is presented here. It is restricted to two component states and two system states. In [44] an extension of the Boolean algebra is proposed which enables one to treat components and systems with more than two states (e.g. for valves: open, closed, half closed). However, there is the difficulty of determining probabilities for intermediate states of components and their impacts on the dynamic behaviour of the systems.

  6. 6.

    In what follows system structures are illustrated by means of flowing fluids and valves; it goes without saying that the statements made apply quite generally for any type of component.

  7. 7.

    If the analysis pursues the objective of establishing the functioning of the system the analogous sets are called path sets. The set notation is only occasionally applied; use of the associated binary functions is more common.

References

  1. Gruhn G, Kafarov VV (1979) Zuverlässigkeit von Chemieanlagen, Leipzig

    Google Scholar 

  2. Hauptmanns U, Rodriguez J (1994) Untersuchungen zum Arbeitsschutz bei An- und Abfahrvorgängen von Chemieanlagen, Schriftenreihe der Bundesanstalt für Arbeitsschutz, Fb 709, Dortmund

    Google Scholar 

  3. DIN 25424-1:1981-09, Fehlerbaumanalyse; Methode und Bildzeichen

    Google Scholar 

  4. DIN 31051:2012-09, Grundlagen der Instandhaltung

    Google Scholar 

  5. Peters OH, Meyna A (1985) Handbuch der Sicherheitstechnik. Carl Hanser, München

    Google Scholar 

  6. Kapur KC, Lamberson LR (1977) Reliability in engineering design. Wiley, New York

    Google Scholar 

  7. Dhillon BS, Singh C (1981) Engineering reliability—new techniques and applications. Wiley, New York

    Google Scholar 

  8. Veseley WE et al (1981) Fault tree handbook, NUREG-0492

    Google Scholar 

  9. Fire & Explosion Index Hazard Classification Guide (1994) DOW Chemical Company, Midland, Jan 1994

    Google Scholar 

  10. Lewis DJ (1979) The Mond fire, explosion, and toxicity index—a development of the dow index. In: A.I.Ch.E. Loss Prevention Symposium. Houston

    Google Scholar 

  11. Zogg HA (1987) A brief introduction to the “Zurich” method of hazard analysis. Zurich Insurance Group, Risk Engineering

    Google Scholar 

  12. Wells G (1996) Hazard identification and risk assessment. IchemE, Rugby

    Google Scholar 

  13. IEC 61882 Ed. 1.0 b: 2001 (2001) Hazard and operability studies (HAZOP studies) application guide, Edition: 1.0, International Electrotechnical Commission

    Google Scholar 

  14. Das PAAG-Verfahren, IVSS Genf 2000

    Google Scholar 

  15. Hauptmanns U (2012) Process and plant safety analysis. In: Hauptmanns U (ed) Plant and Process Safety, vol 6. Risk analysis, Ullmann’s Encyclopedia of Industrial Chemistry, 8th edn. Wiley-VCH, Weinheim. 10.1002/14356007.q20_q05

  16. IEC 60812:2006 (2006) Analysis techniques for system reliability—Procedure for failure mode and effects analysis (FMEA); German version EN 60812:2006

    Google Scholar 

  17. Aven T (1992) Reliability and risk analysis. Elsevier, London

    Google Scholar 

  18. Ereignisablaufanalyse; Verfahren, graphische Symbole und Auswertung (Event tree analysis; method, graphical symbols and evaluation) DIN 25419:1985-11

    Google Scholar 

  19. Rausand M, Høyland A (2004) System reliability theory. Wiley-VCH, Weinheim

    MATH  Google Scholar 

  20. Bridges WG, Dowell AM III, Gollin M, Greenfield WA, Poulsen JM, Turetzky W (2001) Layer of protection analysis: simplified process risk assessment, Center for Chemical Process Safety. AIChE, New York

    Google Scholar 

  21. PRA Procedures Guide (1983) A guide to the performance of probabilistic risk assessments for nuclear power plants NUREG[CR-2300, vols. 1 and 2, US Nuclear Regulatory Commission, Washington, D.C.

    Google Scholar 

  22. Hauptmanns U (1998) Fault tree analysis for process plants. In: Kandel A, Avni E (eds) Engineering risk and hazard assessment, vol. I. CRC Press Inc., Boca Raton

    Google Scholar 

  23. http://www.umweltbundesamt.de/zema/index.html

  24. Hartung J (1991) Statistik: Lehr- und Handbuch der Angewandten Statistik. R. Oldenbourg Verlag, München

    Google Scholar 

  25. Martz HF, Waller RA (1982) Bayesian reliability analysis. Wiley, New York, Chichester, Brisbane, Toronto, Singapore

    Google Scholar 

  26. Lakner AA, Anderson RT (1985) Reliability engineering for nuclear and other high technology systems—a practical guide. Chapman & Hall, London, New York

    Google Scholar 

  27. Gesellschaft für Reaktorsicherheit (1979) Deutsche Risikostudie Kernkraftwerke. Eine Untersuchung zu dem durch Störfälle in Kernkraftwerken verursachten Risiko Köln

    Google Scholar 

  28. Risk analysis of six potentially hazardous industrial objects in the Rijnmond Area—a pilot study. A report to the Rijnmond Public Authority, Dordrecht, Holland/Boston,USA/London, England 1982

    Google Scholar 

  29. Hauptmanns U, Hömke P, Huber I, Reichart G, Riotte HG (1985) Ermittlung der Kriterien für die Anwendung systemanalytischer Methoden zur Durchführung von Sicherheitsanalysen für Chemieanlagen, GRS-59, Köln

    Google Scholar 

  30. Barlow RE, Proschan F (1975) Statistical theory of reliability and life testing - probability models. Society for Industrial and Applied Mathematics, New York

    Google Scholar 

  31. Härtler G (1983) Statistische Methoden für die Zuverlässigkeitsanalyse, Berlin

    Google Scholar 

  32. Beichelt F, Franken P (1984) Zuverlässigkeit und Instandhaltung—Mathematische Methoden. München, Wien

    Google Scholar 

  33. Doberstein H, Hauptmanns U et al (1988) Ermittlung von Zuverlässigkeitskenngrößen für Chemieanlagen, GRS-A-1500, Köln

    Google Scholar 

  34. Hömke P, Krause HW, Ropers W, Verstegen C, Hüren H, Schlenker HV, Dörre P, Tsekouras A (1984) Zuverlässigkeitskenngrößenermittlung im Kernkraftwerk Biblis B—Abschlußbericht—, GRS-A-1030 / I–VI, Köln

    Google Scholar 

  35. Bundesamt für Strahlenschutz (Hrsg.) (2005) Facharbeitskreis Probabilistische Sicherheitsanalyse für Kernkraftwerke, Daten zur probabilistischen Sicherheitsanalyse für Kernkraftwerke, BfS-SCHR-38/05, Oktober 2005

    Google Scholar 

  36. Centralized Reliability and Events Database (2010) Reliability data for nuclear power plant components, VGB PowerTech e.V., Essen

    Google Scholar 

  37. Centralized Reliability and Events Database (ZEDB) (2011) Reliability data for nuclear power plant components—June 2010, 3rd upgrading of TW 805e, VGB PowerTech e.V., Essen

    Google Scholar 

  38. SINTEF (2009) Offshore reliability data handbook 5th edn, vol 1—Topside equipment, vol 2—Subsea Equipment (OREDA 2009), Trondheim

    Google Scholar 

  39. Health and Safety Executive (2002) Offshore hydrocarbon release statistics, 2001. HID Statistics Report, HSR 2001 02, Jan 2002

    Google Scholar 

  40. Hablawetz D, Matalla N, Adam G (2007) IEC 61511 in der Praxis, Erfahrungen eines Anlagenbetreibers, atp 10.2007, 34–43

    Google Scholar 

  41. Cox DR (1962) Renewal theory. Methuen publishing, London

    Google Scholar 

  42. Abramowitz M, Stegun I (1965) Handbook of mathematical functions with formulas, graphs and mathematical tables, Series 55, Washington

    Google Scholar 

  43. Chu TL, Apostolakis G (1980) Methods for probabilistic analysis of noncoherent fault trees. IEEE Trans Reliab R-29(5):354–360

    Google Scholar 

  44. Caldarola L (1979) Fault tree analysis with multistate components. KfK 2761[EUR 5756e

    Google Scholar 

  45. Hauptmanns U (1986) Análisis de árboles de fallos, editorial bellaterra, Barcelona

    Google Scholar 

  46. Camarinopoulos L, Yllera J (1986) Advanced concepts in fault tree modularisation. Nucl Eng Des 91:79–91

    Article  Google Scholar 

  47. Koslow BA, Uschakow IA (1979) Handbuch zur Berechnung der Zuverlässigkeit für Ingenieure. Hanser Verlag, München

    Google Scholar 

  48. Mosleh A, Fleming KL, Parry GW, Paula HM, Worledge DH, Rasmuson DM (1988) Procedure for treating common cause failures in safety and reliability studies, vol 1: procedural framework and examples. NUREG[CR-4780 Jan 1988; vol 2: analytic background and techniques, NUREG/CR-4780, Dec 1988

    Google Scholar 

  49. Dietlmeier W et al (1981) Deutsche Risikostudie Kernkraftwerke. Fachband 2: Zuverlässigkeitsanalyse, GRS Köln

    Google Scholar 

  50. http://www.aria.developpement-durable.gouv.fr/

  51. Gesellschaft für Anlagen- und Reaktorsicherheit (1990) Deutsche Risikostudie Kernkraftwerke-Phase B, Köln

    Google Scholar 

  52. Swain AD, Guttmann HE (1983) Handbook of human reliability analysis with emphasis on nuclear power plant application. Final Report NUREG/CR-1278 Washington, D.C.

    Google Scholar 

  53. Rasmussen J (1979) On the structure of knowledge—a morphology of mental models in a man machine context Risø-M-2192. Risø National Laboratory, Denmark

    Google Scholar 

  54. Hauptmanns U, Pana P, Stück R, Verstegen C, Yllera J (1990) Nutzung sicherheitstechnischer Untersuchungen aus der Prozeßindustrie für den Arbeitsschutz, Schriftenreihe der Bundesanstalt für Arbeitsschutz Fb 619, Dortmund 1990

    Google Scholar 

  55. Hauptmanns U (1995) Untersuchung zum Arbeitsschutz bei An- und Abfahrvorgängen einer Nitroglykol-Anlage. Chem Ing Tech 67:S179–S183

    Google Scholar 

  56. Hauptmanns U (2008) The impact of reliability data on probabilistic safety calculations. J Loss Prev Process Ind 21:38–49

    Article  Google Scholar 

  57. Hauptmanns U, Jablonski D (2006) Comparison of the availability of trip systems for reactors with exothermal reactions. In: Stamatelatos MG, Blackman HS (eds) Proceedings of the 8th international conference on probabilistic safety assessment and management PSAM 8, New Orleans/USA—14–18. May 2006, American Society of Mechanical Engineers, U.S.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Hauptmanns .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hauptmanns, U. (2015). Investigation of Engineered Plant Systems. In: Process and Plant Safety. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40954-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40954-7_9

  • Published:

  • Publisher Name: Springer Vieweg, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40953-0

  • Online ISBN: 978-3-642-40954-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics