Skip to main content

Effect of Pressure-Dependency of the Yield Criterion on the Strain Rate Intensity Factor

  • Chapter
  • First Online:
  • 1525 Accesses

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

In the case of several rigid plastic models, the equivalent strain rate (quadratic invariant of the strain rate tensor) approaches infinity in the vicinity of maximum friction surfaces. The strain rate intensity factor is the coefficient of the leading singular term in a series expansion of the equivalent strain rate in the vicinity of such surfaces. This coefficient controls the magnitude of the equivalent strain rate in a narrow material layer near maximum friction surfaces. On the other hand, the equivalent strain rate is involved in many conventional equations describing the evolution of parameters characterizing material properties. Experimental data show that a narrow layer in which material properties are quite different from those in the bulk often appears in the vicinity of surfaces with high friction in metal forming processes. This experimental fact is in qualitative agreement with the aforementioned evolution equations involving the equivalent strain rate. However, when the maximum friction law is adopted, direct use of such equations is impossible since the equivalent strain rate in singular. A possible way to overcome this difficulty is to develop a new type of evolution equations involving the strain rate intensity factor instead of the equivalent strain rate. This approach is somewhat similar to the conventional approach in the mechanics of cracks when fracture criteria from the strength of materials are replaced with criteria based on the stress intensity factor in the vicinity of crack tips. The development of the new approach requires a special experimental program to establish relations between the magnitude of the strain rate intensity factor and the evolution of material properties in a narrow material layer near surfaces with high friction as well as a theoretical method to deal with singular solutions for rigid plastic solids. Since no numerical method has been yet developed to determine the strain rate intensity factor, the present chapter focuses on analytical and semi-analytical solutions from which the dependence of the strain rate intensity factor on process and material parameters are found. In particular, the effect of pressure-dependency of the yield criterion on the strain rate intensity factor is emphasized using the double shearing model.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Alexandrov, S., Richmond, O.: Int. J. Non-Linear Mech. 36(1), 1 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alexandrov, S., Lyamina, E.: Dokl. Phys. 47(4), 308 (2002)

    Article  MathSciNet  Google Scholar 

  3. Alexandrov, S., Mishuris, G.: J. Eng. Math. 65(2), 143 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Alexandrov, S.: In: Proceedings of 10th Biennial ASME Conference on Engineering Systems Design and Analysis (ESDA 2010) ESDA2010-24021 (2010)

    Google Scholar 

  5. Alexandrov, S., Harris, D.: Int. J. Mech. Sci. 48(7), 750 (2006)

    Article  MATH  Google Scholar 

  6. Moylan, S., Kompella, S., Chandrasekar, S., Farris, T.: Trans. ASME J. Manuf. Sci. Eng. 125(2), 310 (2003)

    Article  Google Scholar 

  7. Trunina, T., Kokovkhin, E.: J. Mach. Manuf. Reliab. 37(2), 160 (2008)

    Article  Google Scholar 

  8. Alexandrov, S., Grabko, D., Shikimaka, O.: J. Mach. Manuf. Reliab. 38(3), 277 (2009)

    Article  Google Scholar 

  9. Fries, T.P., Belytschko, T.: Int. J. Numer. Meth. Eng. 84, 253 (2010)

    MathSciNet  MATH  Google Scholar 

  10. Spencer, A.: Mechanics of Solids, pp. 607–652. Pergamon Press, Oxford (1982)

    Google Scholar 

  11. Hill, R.: The Mathematical Theory of Plasticity. Clarendon Press, Oxford (1950)

    Google Scholar 

  12. Rees, D.: Basic Engineering Plasticity. Butterworth-Heinemann, Oxford (2006)

    Google Scholar 

  13. Shield, R.: Proc. Roy. Soc. 233A(1193), 267 (1955)

    Article  MathSciNet  Google Scholar 

  14. Druyanov, B., Nepershin, R.: Problems of Technological Plasticity. Elsevier, Amsterdam (1994)

    Google Scholar 

  15. Menrabadi, M., Cowin, S.: J. Mech. Phys. Solids 26, 269 (2001)

    Article  Google Scholar 

  16. Alexandrov, S., Druyanov, B.: Mech. Solids 27(4), 110 (1992)

    Google Scholar 

  17. Druyanov, B., Alexandrov, S.: Int. J. Plast. 8(7), 819 (1992)

    Article  MATH  Google Scholar 

  18. Alexandrov, S.: Sov. Phys. Dokl. 37(6), 283 (1992)

    MathSciNet  Google Scholar 

  19. Alexandrov, S.: Mech. Solids 30(5), 111 (1995)

    Google Scholar 

  20. Alexandrov, S., Richmond, O.: Dokl. Phys. 43(6), 362 (1998)

    MathSciNet  Google Scholar 

  21. Alexandrov, S.: J. Appl. Mech. Tech. Phys. 46(5), 766 (2005)

    Article  MathSciNet  Google Scholar 

  22. Alexandrov, S., Mishuris, G.: Arch. Appl. Mech. 77(1), 35 (2007)

    Article  MATH  Google Scholar 

  23. Alexandrov, S.: J. Appl. Mech. Tech. Phys. 50(5), 886 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Alexandrov, S., Harris, D.: Eur. J. Mech. A. Solids 29(6), 966 (2010)

    Google Scholar 

  25. Alexandrov, S.: J. Appl. Mech. Tech. Phys 52(3), 483 (2011)

    Article  MATH  Google Scholar 

  26. Alexandrov, S.: Mater. Sci. Forum 623, 1 (2009)

    Article  MathSciNet  Google Scholar 

  27. Alexandrov, S., Jeng, Y.R.: J. Eng. Math. 71(4), 339 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Alexandrov, S., Lyamina, E.: J. Appl. Mech. Tech. Phys. 50(3), 504 (2009)

    Article  MATH  Google Scholar 

  29. Alexandrov, S., Kocak, M.: Fatigue Fract. Eng. Mater. Struct. 30(4), 351 (2007)

    Article  Google Scholar 

  30. Alexandrov, S., Richmond, O.: Fatigue Fract. Eng. Mater. Struct. 723–728 (2000)

    Google Scholar 

  31. Spencer, A.: Int. J. Mech. Sci. 7, 197 (1965)

    Google Scholar 

  32. Shield, R.: J. Mech. Phys. Solids 3, 246 (1955)

    Article  MathSciNet  Google Scholar 

  33. Alexandrov, S., Lyamina, E.: Mech. Solids 43(5), 751 (2008)

    Article  Google Scholar 

  34. Spencer, A.: J. Mech. Phys. Solids 12, 337 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  35. Marshall, E.: Acta Mech. 3, 82 (1967)

    Article  Google Scholar 

  36. Pemberton, C.: J. Mech. Phys. Solids 13(6), 351 (1965)

    Article  Google Scholar 

  37. Alexandrov S., Lyamina, E.: Mech. Solids (in press)

    Google Scholar 

  38. Alexandrov, S., Lyamina, E.: Mech. Solids 38(6), 40 (2003)

    Google Scholar 

  39. Alexandrov, S., Lyamina, E.: Int. J. Mech. Sci. 45(9), 1505 (2003)

    Article  MATH  Google Scholar 

  40. Alexandrov, S., Lyamina, E.: Acta Mech. 187, 37 (2006)

    Article  MATH  Google Scholar 

  41. Alexandrov, S., Lyamina, E.: J. Appl. Mech. Tech. Phys. 47(5), 757 (2006)

    Article  Google Scholar 

  42. Alexandrov, S., Lyamina, E.: J. Appl. Mech. Tech. Phys. 52(4), 657 (2011)

    Article  MATH  Google Scholar 

  43. Kanninen, M., Popelar, C.: Advanced Fracture Mechanics. Oxford University Press, New York (1985)

    MATH  Google Scholar 

Download references

Acknowledgments

The research described in this chapter has been supported by the grant RFBR-11-01-00987. A part of this work was done while the first author was with National Chung Cheng University (Taiwan) as a research scholar under the recruitment program supported by the National Science Council of Taiwan (contact 99-2811-E-194-009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergei Alexandrov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Alexandrov, S., Lyamina, E., Jeng, YR. (2014). Effect of Pressure-Dependency of the Yield Criterion on the Strain Rate Intensity Factor. In: Altenbach, H., Öchsner, A. (eds) Plasticity of Pressure-Sensitive Materials. Engineering Materials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40945-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40945-5_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40944-8

  • Online ISBN: 978-3-642-40945-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics