Skip to main content

Basic Equations of Continuum Mechanics

  • Chapter
  • First Online:

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

The modeling of the behavior of pressure-sensitive materials is embedded in the general continuum mechanics. The basic equations of continuum mechanics can be split into the material-independent and the material-dependent equations. The starting point is the introduction of the kinematics based on pure mathematical considerations. In addition, the velocities and the accelerations of the relevant kinematical variables are presented. The next section is devoted to the introduction of the action on the continuum and the inner reaction. Starting with such properties like forces and stresses finally the static equilibrium is stated. The last part of the material-independent equations is the introduction of the balances. Limiting our discussions by thermo-mechanical actions only, the balance of mass, momentum, moment of momentum, energy and entropy are deduced. The specific properties and features of the pressure-sensitive materials are presented in the next sections. Within this chapter the general ideas of material modeling (deductive approach) are given. Finally, some examples of special constitutive equations for incompressible and compressible materials are presented. These examples are mostly related to rubber-like materials.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Haupt, P.: Continuum Mechanics and Theory of Materials, 2nd edn. Springer, Berlin (2002)

    Book  MATH  Google Scholar 

  2. Altenbach, H. (ed.): Holzmann Meyer Schumpich Technische Mechanik Festigkeitslehre, 10th edn. Springer Vieweg, Stuttgart (2012)

    Google Scholar 

  3. Gross, D., Hauger, W., Schröder, J., Wall, W.A.: Technische Mechanik, vol. 2. Elastostatik, 9th edn. Springer, Berlin (2008)

    Google Scholar 

  4. Eremeyev, V., Lebedev, L., Altenbach, H.: Foundations of Micropolar Mechanics. Springer-Briefs in Applied Sciences and Technologies. Springer, Heidelberg (2013)

    Google Scholar 

  5. Eremeyev, V.A., Pietraszkiewicz, W.: Material symmetry group of the non-linear polar-elastic continuum. J. Solids Struct. 49(14), 1993–2005 (2012)

    Article  Google Scholar 

  6. Eringen, A.C.: Microcontinuum Field Theory, Foundations and Solids, vol. 2. Springer, New York (1999a)

    Google Scholar 

  7. Eringen, A.C.: Microcontinuum Field Theory, Fluent Media, vol. 2. Springer, New York (1999b)

    Google Scholar 

  8. Pietraszkiewicz, W., Eremeyev, V.A.: On natural strain measures of the non-linear micropolar continuum. Int. J. Solids Struct. 46(3–4), 774–787 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Müller I (1973) Thermodynamik: die Grundlagen der Materialtheorie. Bertelsmann Universitätsverlag

    Google Scholar 

  10. Palmov, V.A.: Vibrations of Elasto-plastic Bodies. Foundations of Engineering Mechanics. Springer, Berlin (1998)

    Book  Google Scholar 

  11. Salençon, J.: Handbbok of Continuum Mechanics. Springer, Berlin (2001)

    Google Scholar 

  12. Willner, K.: Kontinuums—und Kontaktmechanik: Synthetische und analytische Darstellung. Springer, Berlin (2003)

    Book  Google Scholar 

  13. Altenbach, H., Eremeyev, V. (eds.): Generalized Continua— from the Theory to Engineering Applications, CISM International Centre for Mechanical Sciences, vol. 541. Springer, Wien (2013)

    Google Scholar 

  14. Altenbach, H., Naumenko, K., Zhilin, P.: A micro-polar theory for binary media with application to phase-transitional flow of fiber suspensions. Continuum Mech Thermodyn 15, 539–570 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Altenbach, H., Maugin, G.A., Erofeev, V. (eds.): Mechanics of Generalized Continua, Advanced Structured Materials, vol. 7. Springer, Heidelberg (2011)

    Google Scholar 

  16. Altenbach, H., Forest, S., Krivtsov, A. (eds.): Generalized Continua as Models for Materials with Multi-scale Effects or Under Multi-field Actions, Advanced Structured Materials, vol. 22. Springer, Heidelberg (2013)

    Google Scholar 

  17. Maugin, G.A.: Continuum Mechanics Through the Twentieth Century. Springer, Heidelberg (2013)

    Book  MATH  Google Scholar 

  18. Maugin, G.A., Metrikine, A. (eds.): Mechanics of Generalized Continua - One Hundred Years After the Cosserats, Advances in Mechanics and Mathematics 21. Springer, Berlin (2010)

    Google Scholar 

  19. Rubin, M.B.: Cosserat Theories: Shells Rods and Points. Kluwer, Dordrecht (2000)

    Book  MATH  Google Scholar 

  20. Krawietz, A.: Materialtheorie. Springer, Berlin (1986)

    Book  MATH  Google Scholar 

  21. Noll, W.: The Foundations of Mechanics and Thermodynamics. Springer, Berlin (1974)

    Book  MATH  Google Scholar 

  22. Bertram, A.: What is the general constitutive equation? In: Beiträge Festschrift zum 65 . Geburtstag von Rudolf Trostel, TU Berlin. Berlin, pp. 28–37 (1994)

    Google Scholar 

  23. Giesekus, H.: Phänomenologische Rheologie : eine Einführung. Springer, Berlin (1994)

    Book  MATH  Google Scholar 

  24. Reiner, M.: Rheologie. Fachbuchverlag, Leipzig (1968)

    Google Scholar 

  25. Truesdell, C.: A First Course in Rational Continuum Mechanics, Pure and Applied Mathematics, vol. 1. Academic Press, New York (1977)

    Google Scholar 

  26. Bertram, A., Forest, S.: The thermodynamics of gradient elastoplasticity. Continuum Mech. Thermodyn. 25, 20 (2013)

    Google Scholar 

  27. dell’Isola F, Sciarra G, Vidoli S.: Generalized Hooke’s law for isotropic second gradient materials. Proc. R Soc. A 495, 2177–2196 (2009)

    Google Scholar 

  28. Forest, S., Trinh, D.K.: Generalized continua and non-homogeneous boundary conditions in homogenisation methods. ZAMM 91(2), 90–109 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. Podio-Guidugli, P., Vianello, M.: Hypertractions and hyperstresses convey the same mechanical information. Continuum Mech. Thermodyn. 22, 163–176 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. Backhaus, G.: Zum evolutionsgesetz der kinematischen verfestigung in objektiver darstellung. ZAMM 72(9), 397–406 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  31. Lemaitre, J., Chaboche, J.L.: Mechanics of Solid Materials. Cambridge University Press, Cambridge (1990)

    Book  MATH  Google Scholar 

  32. Lurie, A.I.: Nonliner Theory of Elasticity. North-Holland, Amsterdam (1990)

    Google Scholar 

  33. Ogden, R.: Non-Linear Elastic Deformations. Ellis Horwood, Chichester (1984)

    Google Scholar 

  34. Treloar, L.: The Physics of Rubber Elasticity, 3rd edn. Oxford University Press, Oxford (1975)

    Google Scholar 

  35. Mooney, M.: A theory of large elastic deformations. J. Appl. Phys. 11, 582–592 (1940)

    Article  MATH  Google Scholar 

  36. Rivlin, R.S., Saunders, D.W.: Large elastic deformations of isotropic materials. Phil. Trans. Roy. Soc. A 243, 251–288 (1951)

    Article  MATH  Google Scholar 

  37. Biderman V.L.: On the calculation of rubber-like materials (in Russ.). In: Strengths Analysis (in Russ.), 3. Mashgiz, pp. 40–87 (1958)

    Google Scholar 

  38. Hart-Smith, L.J., Crisp, J.D.C.: Large elastic deformations in thin rubber membranes. Int. J. Eng. Sci. 5(1), 1–24 (1967)

    Article  MATH  Google Scholar 

  39. Alexander, H.: A constitutive relation for rubber-like materials. Int. J. Eng. Sci. 6(9), 549–563 (1968)

    Article  Google Scholar 

  40. Hutchinson, W.D., Becker, G.W., Landel, R.F. Determination of the stored energy function of rubber-like materials. In: Bull 4th Meeting Interagency Chemical Rocket Propulsion Group—Working Group Mechanical Behavior, vol 1. No. 94U, pp 141–152. CPIA

    Google Scholar 

  41. Ogden, R.W.: Large deformation isotropic elasticity I: on the correlation of theory and experiment for incompressible rubberlike solids. Proc. Roy. Soc. London A 326, 565–584 (1972)

    Article  MATH  Google Scholar 

  42. Chernykh, K.F., Shubina, I.M.: The laws of elasticity for isotropic compressible materials (in Russ.). In: Mekhanika Elastomerov. Krasnodar, vol I, 54–65 (1977)

    Google Scholar 

  43. FCK (1986) Nonlinear Theory of Elasticity in Engineering Calculations (in Russ.). Mashinostroenie, Moscow

    Google Scholar 

  44. Bartenev G.M, Khazanovich T.N: On a constitutive law for hyperelastic strans of cross-linked polymer (in russ.). Polym. Sci. 2(1), 20–28 (1960)

    Google Scholar 

  45. Fu Y.B, Ogden R.W (eds.): Nonlinear elasticity. Theory and applications. No. 283 in Lecture Note Series. Cambridge University Press, Cambridge (2001)

    Google Scholar 

  46. Arruda, E., Boyce, M.: A three-dimensional constitutive model the large stretch behavior of rubber elastic materials. J. Mech. Phys. Solids 41(2), 389–412 (1993)

    Article  Google Scholar 

  47. Blatz, P.J., Ko, W.L.: Application of finite elasticity theory to the deformation of rubbery materials. Tran. Soc. Rheol. 6, 223–251 (1962)

    Article  Google Scholar 

  48. Signorini, A.: Solidi incompribili. Ann. Mat. Pura Appl. 39, 147–201 (1955)

    Google Scholar 

  49. Murnaghan, F.D.: Finite Deformation of an Elastic Solid. Wiley, New York (1951)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holm Altenbach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Altenbach, H., Eremeyev, V.A. (2014). Basic Equations of Continuum Mechanics. In: Altenbach, H., Öchsner, A. (eds) Plasticity of Pressure-Sensitive Materials. Engineering Materials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40945-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40945-5_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40944-8

  • Online ISBN: 978-3-642-40945-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics