Skip to main content

Order Compression Schemes

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8139))

Abstract

Sample compression schemes are schemes for “encoding” a set of examples in a small subset of examples. The long-standing open sample compression conjecture states that, for any concept class \(\mathcal{C}\) of VC-dimension d, there is a sample compression scheme in which samples for concepts in \(\mathcal{C}\) are compressed to samples of size at most d.

We show that every order over \(\mathcal{C}\) induces a special type of sample compression scheme for \(\mathcal{C}\), which we call order compression scheme. It turns out that order compression schemes can compress to samples of size at most d if \(\mathcal{C}\) is maximum, intersection-closed, a Dudley class, or of VC-dimension 1–and thus in most cases for which the sample compression conjecture is known to be true.

Since order compression schemes are much simpler than sample compression schemes in general, their study seems to be a promising step towards resolving the sample compression conjecture. We reveal a number of fundamental properties of order compression schemes, which are helpful in such a study. In particular, order compression schemes exhibit interesting graph-theoretic properties as well as connections to the theory of learning from teachers.

This work was partly supported by the Natural Sciences and Engineering Research Council of Canada (NSERC).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Littlestone, N., Warmuth, M.K.: Relating data compression and learnability. Technical report, University of California at Santa Cruz (1986)

    Google Scholar 

  2. Floyd, S., Warmuth, M.K.: Sample compression, learnability, and the Vapnik-Chervonenkis dimension. Machine Learning 21(3), 269–304 (1995)

    Google Scholar 

  3. Blumer, A., Ehrenfeucht, A., Haussler, D., Warmuth, M.K.: Learnability and the Vapnik-Chervonenkis dimension. Journal of the ACM 36(4), 929–965 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ben-David, S., Litman, A.: Combinatorial variability of Vapnik-Chervonenkis classes with applications to sample compression schemes. Discrete Applied Mathematics 86, 3–25 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. Doliwa, T., Fan, G., Simon, H.U., Zilles, S.: Recursive teaching dimension, VC-dimension, and sample compression (submitted, January 2013)

    Google Scholar 

  6. Doliwa, T., Simon, H.U., Zilles, S.: Recursive teaching dimension, learning complexity, and maximum classes. In: Hutter, M., Stephan, F., Vovk, V., Zeugmann, T. (eds.) ALT 2010. LNCS (LNAI), vol. 6331, pp. 209–223. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  7. Kuzmin, D., Warmuth, M.K.: Unlabeled compression schemes for maximum classes. Journal of Machine Learning Research 8, 2047–2081 (2007)

    MathSciNet  MATH  Google Scholar 

  8. Rubinstein, B.I., Rubinstein, J.H.: A geometric approach to sample compression. Journal of Machine Learning Research 13, 1221–1261 (2012)

    Google Scholar 

  9. Sauer, N.: On the density of families of sets. J. Comb. Theory, Ser. A 13(1), 145–147 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  10. Welzl, E.: Complete range spaces (1987) (unpublished manuscript)

    Google Scholar 

  11. Dudley, R.M.: A course on empirical processes. Lecture Notes in Mathematics 1097, 1–142 (1984)

    Article  MathSciNet  Google Scholar 

  12. Zilles, S., Lange, S., Holte, R., Zinkevich, M.: Models of cooperative teaching and learning. Journal of Machine Learning Research 12, 349–384 (2011)

    MathSciNet  Google Scholar 

  13. Goldman, S.A., Kearns, M.J.: On the complexity of teaching. Journal of Computer and System Sciences 50(1), 20–31 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  14. Shinohara, A., Miyano, S.: Teachability in computational learning. New Generation Computing 8(4), 337–347 (1991)

    Article  MATH  Google Scholar 

  15. Fan, G.: A graph-theoretic view of teaching. M.Sc. Thesis, University of Regina (2012)

    Google Scholar 

  16. Natarajan, B.K.: On learning boolean functions. In: Proceedings of the 19th Annual Symposium on Theory of Computing, pp. 296–304 (1987)

    Google Scholar 

  17. Helmbold, D.P., Sloan, R.H., Warmuth, M.K.: Learning nested differences of intersection-closed concept classes. Machine Learning 5, 165–196 (1990)

    Google Scholar 

  18. Alpaydin, E.: Introduction to Machine Learning, 2nd edn. MIT Press (2010)

    Google Scholar 

  19. Welzl, E., Wöginger, G.: On Vapnik-Chervonenkis dimension one (1987) (unpublished manuscript)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Darnstädt, M., Doliwa, T., Simon, H.U., Zilles, S. (2013). Order Compression Schemes. In: Jain, S., Munos, R., Stephan, F., Zeugmann, T. (eds) Algorithmic Learning Theory. ALT 2013. Lecture Notes in Computer Science(), vol 8139. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40935-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40935-6_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40934-9

  • Online ISBN: 978-3-642-40935-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics