Skip to main content

A Dynamic Programming Algorithm for Learning Chain Event Graphs

  • Conference paper
Discovery Science (DS 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8140))

Included in the following conference series:

Abstract

Chain event graphs are a model family particularly suited for asymmetric causal discrete domains. This paper describes a dynamic programming algorithm for exact learning of chain event graphs from multivariate data. While the exact algorithm is slow, it allows reasonably fast approximations and provides clues for implementing more scalable heuristic algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Smith, J.Q., Anderson, P.E.: Conditional independence and chain event graphs. Artificial Intelligence 172(1), 42–68 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Thwaites, P., Smith, J.Q., Riccomagno, E.: Causal analysis with chain event graphs. Artificial Intelligence 174(12-13), 889–909 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Freeman, G., Smith, J.Q.: Bayesian MAP model selection of chain event graphs. Journal of Multivariate Analysis 102(7), 1152–1165 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Freeman, G.: Learning and predicting with chain event graphs. PhD thesis, University of Warwick (2010)

    Google Scholar 

  5. Ott, S., Miyano, S.: Finding optimal gene networks using biological constraints. Genome Informatics 14, 124–133 (2003)

    Google Scholar 

  6. Singh, A., Moore, A.: Finding optimal Bayesian networks by dynamic programming. Technical report, Carnegie Mellon University (June 2005)

    Google Scholar 

  7. Silander, T., Roos, T., Myllymäki, P.: Learning locally minimax optimal Bayesian networks. International Journal of Approximate Reasoning 51(5), 544–557 (2010)

    Article  MathSciNet  Google Scholar 

  8. Steck, H., Jaakkola, T.S.: On the Dirichlet prior and Bayesian regularization. In: Advances in Neural Information Processing Systems 15, Vancouver, Canada, pp. 697–704. MIT Press (2002)

    Google Scholar 

  9. Silander, T., Kontkanen, P., Myllymäki, P.: On sensitivity of the MAP Bayesian network structure to the equivalent sample size parameter. In: Parr, R., van der Gaag, L. (eds.) Proceedings of the 23rd Conference on Uncertainty in Artificial Intelligence (UAI 2007), pp. 360–367. AUAI Press (2007)

    Google Scholar 

  10. Shafer, G.: The Art of Causal Conjecture. MIT Press, Cambridge (1996)

    MATH  Google Scholar 

  11. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann Publishers, San Mateo (1988)

    Google Scholar 

  12. Schwarz, G.: Estimating the dimension of a model. Annals of Statistics 6, 461–464 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  13. Akaike, H.: Information theory and an extension of the maximum likelihood principle. In: Petrox, B., Caski, F. (eds.) Proceedings of the Second International Symposium on Information Theory, Budapest, pp. 267–281. Akademiai Kiado (1973)

    Google Scholar 

  14. Kontkanen, P., Myllymäki, P.: A linear-time algorithm for computing the multinomial stochastic complexity. Information Processing Letters 103(6), 227–233 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cooper, G., Yoo, C.: Causal discovery from a mixture of experimental and observational data. In: Proceedings of the Fifteenth Conference Annual Conference on Uncertainty in Artificial Intelligence (UAI 1999), pp. 116–125. Morgan Kaufmann, San Francisco (1999)

    Google Scholar 

  16. Sloane, N.J.A.: The On-Line Encyclopedia of Integer Sequences. Bell or exponential numbers: ways of placing n labeled balls into n indistinguishable boxes, http://oeis.org/A000110A000110

  17. Tian, J., He, R., Ram, L.: Bayesian model averaging using the k-best Bayesian network structures. In: Proceedings of the Twenty-Sixth Annual Conference on Uncertainty in Artificial Intelligence (UAI 2010), Corvallis, Oregon, pp. 589–597. AUAI Press (2010)

    Google Scholar 

  18. Cooper, G., Herskovits, E.: A Bayesian method for the induction of probabilistic networks from data. Machine Learning 9, 309–347 (1992)

    MATH  Google Scholar 

  19. Boutilier, C., Friedman, N., Goldszmidt, M., Koller, D.: Context-specific independence in Bayesian networks. In: Proceedings of the Twelfth Annual Conference on Uncertainty in Artificial Intelligence, UAI 1996, pp. 115–123. Morgan Kaufmann Publishers, San Francisco (1996)

    Google Scholar 

  20. Chow, C., Liu, C.: Approximating discrete probability distributions with dependence trees. IEEE Transactions in Information Theory 14(3), 462–467 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  21. Moore, A., Lee, M.S.: Cached sufficient statistics for efficient machine learning with large datasets. Journal of Artificial Intelligence Research 8, 67–91 (1998)

    MathSciNet  MATH  Google Scholar 

  22. Frank, A., Asuncion, A.: UCI machine learning repository (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Silander, T., Leong, TY. (2013). A Dynamic Programming Algorithm for Learning Chain Event Graphs. In: Fürnkranz, J., Hüllermeier, E., Higuchi, T. (eds) Discovery Science. DS 2013. Lecture Notes in Computer Science(), vol 8140. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40897-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40897-7_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40896-0

  • Online ISBN: 978-3-642-40897-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics