Analogy Between Quantum Mechanics and Optics

  • Zhuangqi Cao
  • Cheng Yin
Chapter

Abstract

In order to study the propagation of matter wave in the presence of a given potential profile, we begin with the Maxwell equations describing the behavior of electromagnetic waves. After specializing in the case of a simple three-layer structure, we derived the scalar wave equation, which is a close analogy with the Schrödinger equation. This allows us to take advantage of many well-established results from waveguide optics. Restricting ourselves to one dimension in this chapter, we make several comparisons of the two fundamental equations and relate some (perhaps) similar concepts in the two subjects.

Keywords

Scalar wave equation Schrödinger equation Optical waveguide Quantum well Barrier tunneling Harmonic oscillator 

References

  1. 1.
    D.J. Griffiths, Introduction to Electrodynamics [M], 3rd edn. (Prentice Hall, 1999)Google Scholar
  2. 2.
    A. Einstein, On the motion, required by the molecular-kinetic theory of heat, of particles suspended in a fluid at rest [J]. Ann. Phys. 17, 132 (1905)CrossRefMATHGoogle Scholar
  3. 3.
    L. De Broglie, A tentative theory of light quanta [J]. Philos. Mag. 47, 446 (1924)CrossRefGoogle Scholar
  4. 4.
    M. Born, E. Wolf, Principles of Optics [M] (Cambridge University Press, Cambridge, 1978)Google Scholar
  5. 5.
    E. Schrödinger, Quantisierung als Eigenwertproblem [J]. Ann. Phys. 79, 361 (1926)CrossRefMATHGoogle Scholar
  6. 6.
    T. Tamir, Integrated Optics [M], 2nd edn. (Springer, Berlin/Heidelberg/New York, 1979)Google Scholar
  7. 7.
    R. Shankar, Principles of Quantum Mechanics [M] (Plenum Press, New York, 1994)Google Scholar
  8. 8.
    G. Wentzel, A generalisation of the quantum constraints for the purposes of the wave mechanics [J]. Z. Physik 38, 518 (1926)ADSCrossRefMATHGoogle Scholar
  9. 9.
    H.A. Kramers, Wave mechanics and half-integral quantization [J]. Z. Physik 39, 828 (1926)ADSCrossRefMATHGoogle Scholar
  10. 10.
    L. Brillouin, C.R. Hebd, The undulatory mechanics of Schrödinger [J]. Acad. Sci. 183, 24 (1926)Google Scholar
  11. 11.
    A. Messiah, Quantum Mechanics, vol. 1 [M] (North-Holland, Amsterdam, 1964)Google Scholar
  12. 12.
    M.J. Adams, An Introduction to Optical Waveguides [M] (Wiley, Binghamton, 1981)Google Scholar
  13. 13.
    R.P. Feymann, A.R. Hibbs, Quantum Mechanics and Path Integrals [M] (McGraw-Hill, New York, 1965)Google Scholar

Copyright information

© Shanghai Jiao Tong University Press, Shanghai and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Zhuangqi Cao
    • 1
  • Cheng Yin
    • 2
  1. 1.Department of Physics and AstronomyShanghai Jiao Tong UniversityShanghaiPeople’s Republic of China
  2. 2.College of IoT EngineeringHohai University, ChangzhouChangzhouPeople’s Republic of China

Personalised recommendations