Skip to main content

Abduction in Logic Programming as Second-Order Quantifier Elimination

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8152))

Abstract

It is known that skeptical abductive explanations with respect to classical logic can be characterized semantically in a natural way as formulas with second-order quantifiers. Computing explanations is then just elimination of the second-order quantifiers. By using application patterns and generalizations of second-order quantification, like literal projection, the globally weakest sufficient condition and circumscription, we transfer these principles in a unifying framework to abduction with three non-classical semantics of logic programming: stable model, partial stable model and well-founded semantics. New insights are revealed about abduction with the partial stable model semantics.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alferes, J.J., Pereira, L.M., Swift, T.: Abduction in well-founded semantics and generalized stable models via tabled dual programs. Theory and Pract. Log. Program. 4(4), 383–428 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Calvanese, D., Giacomo, G.D., Lenzerini, M., Vardi, M.Y.: View-based query processing: On the relationship between rewriting, answering and losslessness. Theor. Comp. Sci. 371(3), 169–182 (2007)

    Article  MATH  Google Scholar 

  3. Denecker, M., Kakas, A.C.: Abduction in logic programming. In: Kakas, A.C., Sadri, F. (eds.) Computat. Logic (Kowalski Festschrift). LNCS (LNAI), vol. 2407, pp. 402–436. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  4. Doherty, P., Łukaszewicz, W., Szałas, A.: Computing circumscription revisited: A reduction algorithm. J. Autom. Reasoning 18(3), 297–338 (1997)

    Article  MATH  Google Scholar 

  5. Doherty, P., Łukaszewicz, W., Szałas, A.: Computing strongest necessary and weakest sufficient conditions of first-order formulas. In: IJCAI 2001, pp. 145–151. Morgan Kaufmann (2001)

    Google Scholar 

  6. Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause elimination. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 61–75. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  7. Egly, U., Eiter, T., Tompits, H., Woltran, S.: Solving advanced reasoning tasks using quantified Boolean formulas. In: AAAI 2000, pp. 417–422. AAAI Press (2000)

    Google Scholar 

  8. Eiter, T., Gottlob, G., Leone, N.: Abduction from logic programs: Semantics and complexity. Theor. Comp. Sci. 189(1-2), 129–177 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  9. Eiter, T., Wang, K.: Semantic forgetting in answer set programming. Artif. Intell. 172(14), 1644–1672 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ferraris, P., Lee, J., Lifschitz, V.: Stable models and circumscription. Artif. Intell. 175(1), 236–263 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gabbay, D.M., Schmidt, R.A., Szałas, A.: Second-Order Quantifier Elimination: Foundations, Computational Aspects and Applications. College Publications (2008)

    Google Scholar 

  12. Gebser, M., Kaufmann, B., Schaub, T.: Solution enumeration for projected boolean search problems. In: van Hoeve, W.-J., Hooker, J.N. (eds.) CPAIOR 2009. LNCS, vol. 5547, pp. 71–86. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  13. Inoue, K.: Linear resolution for consequence finding. Artif. Intell. 56(2-3), 301–353 (1992)

    Article  MATH  Google Scholar 

  14. Inoue, K., Sakama, C.: Negation as failure in the head. J. Log. Program. 35(1), 39–78 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  15. Iwayama, N., Satoh, K.: Computing abduction by using TMS with top-down expectation. J. Log. Program. 44, 179–206 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  16. Janhunen, T., Niemelä, I., Seipel, D., Simons, P., You, J.H.: Unfolding partiality and disjunctions in stable model semantics. ACM Trans. Comput. Log. 7(1), 1–37 (2006)

    Article  MathSciNet  Google Scholar 

  17. Kakas, A.C., Kowalski, R.A., Toni, F.: The role of abduction in logic programming. In: Gabbay, D.M., Hogger, C.J., Robinson, J.A. (eds.) Handbook of Logic in Artifical Intelligence, vol. 5, pp. 235–324. Oxford University Press (1998)

    Google Scholar 

  18. Kakas, A.C., Mancarella, P.: Generalized stable models: A semantics for abduction. In: ECAI 1990, pp. 385–391. Pitman (1990)

    Google Scholar 

  19. Lang, J., Liberatore, P., Marquis, P.: Propositional independence – formula-variable independence and forgetting. J. of Artif. Intell. Res. 18, 391–443 (2003)

    MathSciNet  MATH  Google Scholar 

  20. Lifschitz, V.: Twelve definitions of a stable model. In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008. LNCS, vol. 5366, pp. 37–51. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  21. Lin, F.: A Study of Nonmonotonic Reasoning. Ph.D. thesis, Stanford Univ. (1991)

    Google Scholar 

  22. Lin, F.: On strongest necessary and weakest sufficient conditions. Artif. Intell. 128(1-2), 143–159 (2001)

    Article  MATH  Google Scholar 

  23. Lin, F., You, J.H.: Abduction in logic programming: A new definition and an abductive procedure based on rewriting. Artif. Intell. 140(1/2), 175–205 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  24. Przymusinski, T.: Well-founded semantics coincides with three-valued stable semantics. Fundam. Inform. 13(4), 445–464 (1990)

    MathSciNet  MATH  Google Scholar 

  25. Przymusinski, T.: Stable semantics for disjunctive programs. New Gen. Comput. 9(3/4), 401–424 (1991)

    Article  Google Scholar 

  26. Saccá, D., Zaniolo, C.: Deterministic and non-deterministic stable models. J. Log. Comput. 7(5), 555–579 (1997)

    Article  MATH  Google Scholar 

  27. Sakama, C., Inoue, K.: Equivalence issues in abduction and induction. J. Applied Logic 7(3), 318–328 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Tompits, H.: Expressing default abduction problems as quantified Boolean formulas. AI Commun. 16(2), 89–105 (2003)

    MathSciNet  MATH  Google Scholar 

  29. Wernhard, C.: Literal projection for first-order logic. In: Hölldobler, S., Lutz, C., Wansing, H. (eds.) JELIA 2008. LNCS (LNAI), vol. 5293, pp. 389–402. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  30. Wernhard, C.: Tableaux for projection computation and knowledge compilation. In: Giese, M., Waaler, A. (eds.) TABLEAUX 2009. LNCS (LNAI), vol. 5607, pp. 325–340. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  31. Wernhard, C.: Circumscription and projection as primitives of logic programming. In: Tech. Comm. ICLP 2010. LIPIcs, vol. 7, pp. 202–211 (2010)

    Google Scholar 

  32. Wernhard, C.: Computing with logic as operator elimination: The ToyElim system. In: WLP 2011, pp. 94–98. Infsys Res. Rep. 1843-11-06, TU Wien (2011)

    Google Scholar 

  33. Wernhard, C.: Projection and scope-determined circumscription. J. Symb. Comput. 47(9), 1089–1108 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  34. Wernhard, C.: Abduction in logic programming as second-order quantifier elimination (extended version). Tech. Rep. KRR 13-05, TU Dresden (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wernhard, C. (2013). Abduction in Logic Programming as Second-Order Quantifier Elimination. In: Fontaine, P., Ringeissen, C., Schmidt, R.A. (eds) Frontiers of Combining Systems. FroCoS 2013. Lecture Notes in Computer Science(), vol 8152. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40885-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40885-4_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40884-7

  • Online ISBN: 978-3-642-40885-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics