Skip to main content

On the Convergence of Boolean Automata Networks without Negative Cycles

  • Conference paper
Cellular Automata and Discrete Complex Systems (AUTOMATA 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8155))

Abstract

Since the 1980’s, automata networks have been at the centre of numerous studies, from both theoretical (around the computational abilities) and applied (around the modelling power of real phenomena) standpoints. In this paper, basing ourselves on the seminal works of Robert and Thomas, we focus on a specific family of Boolean automata networks, those without negative cycles. For these networks, subjected to both asynchronous and elementary updating modes, we give new answers to well known problems (some of them having already been solved) about their convergence towards stable configurations. For the already solved ones, the proofs given are much simpler and neater than the existing ones. For the others, in any case, the proofs presented are constructive.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aracena, J.: Maximum number of fixed points in regulatory Boolean networks. Bulletin of Mathematical Biology 70, 1398–1409 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aracena, J., Demongeot, J., Goles, E.: Positive and negative circuits in discrete neural networks. IEEE Transactions on Neural Networks 15, 77–83 (2004)

    Article  Google Scholar 

  3. Elspas, B.: The theory of autonomous linear sequential networks. IRE Transactions on Circuit Theory 6, 45–60 (1959)

    Article  Google Scholar 

  4. Goles, E.: Fixed point behavior of threshold functions on a finite set. SIAM Journal on Algebraic and Discrete Methods 3, 529–531 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  5. Goles, E., Martínez, S.: Neural and automata networks: dynamical behaviour and applications. Kluwer Academic Publishers (1990)

    Google Scholar 

  6. Goles, E., Salinas, L.: Sequential operator for filtering cycles in Boolean networks. Advances in Applied Mathematics 45, 346–358 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Golomb, S.W.: Shift register sequences. Holden-Day (1967)

    Google Scholar 

  8. Harary, F.: On the notion of balance of a signed graph. Michigan Mathematical Journal 2, 143–146 (1953)

    Article  MathSciNet  Google Scholar 

  9. Hirsch, M.W., Smith, H.: Monotone maps: a review. Journal of Difference Equations and Applications 11, 379–398 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hopfield, J.J.: Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Sciences of the USA 79, 2554–2558 (1982)

    Article  MathSciNet  Google Scholar 

  11. Kauffman, S.A.: Metabolic stability and epigenesis in randomly constructed genetic nets. Journal of Theoretical Biology 22, 437–467 (1969)

    Article  MathSciNet  Google Scholar 

  12. Kauffman, S.A.: Origins of order: self-organization and selection in evolution. Oxford University Press (1993)

    Google Scholar 

  13. Kleene, S.C.: Representation of events in nerve nets and finite automata. In: Automata studies, Annals of Mathematics Studies, vol. 34, pp. 3–41. Princeton Universtity Press (1956)

    Google Scholar 

  14. McCulloch, W.S., Pitts, W.H.: A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics 5, 115–133 (1943)

    Article  MathSciNet  MATH  Google Scholar 

  15. von Neumann, J.: Theory of self-reproducing automata. University of Illinois Press (1966)

    Google Scholar 

  16. Noual, M.: Synchronism vs. asynchronism in Boolean automata networks. Tech. rep., Laboratoire I3S, UMR UNS CNRS (2012), arXiv:1104.4039

    Google Scholar 

  17. Noual, M.: Updating automata networks. Ph.D. thesis, École normale supérieure de Lyon (2012), tel-00726560

    Google Scholar 

  18. Remy, É., Ruet, P., Thieffry, D.: Graphic requirement for multistability and attractive cycles in a Boolean dynamical framework. Advances in Applied Mathematics 41, 335–350 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Richard, A.: Negative circuits and sustained oscillations in asynchronous automata networks. Advances in Applied Mathematics 44, 378–392 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Richard, A., Comet, J.P.: Necessary conditions for multistationarity in discrete dynamical systems. Discrete Applied Mathematics 155, 2403–2413 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Robert, F.: Discrete iterations: a metric study. Springer (1986)

    Google Scholar 

  22. Rouquier, J.B., Regnault, D., Thierry, É.: Stochastic minority on graphs. Theoretical Computer Science 412, 3947–3963 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Saint Savage, N.: The effects of state dependent and state independent probabilistic updating on Boolean network dynamics. Ph.D. thesis, University of Manchester (2005)

    Google Scholar 

  24. Smith, A.R.: Simple computation-universal cellular spaces. Journal of the ACM 18, 339–353 (1971)

    Article  MATH  Google Scholar 

  25. Smith, H.L.: Monotone dynamical systems: an introduction to the theory of competitive and cooperative systems, Mathematical surveys and monographs, vol. 41. American Mathematical Society (1995)

    Google Scholar 

  26. Thomas, R.: Boolean formalization of genetic control circuits. Journal of Theoretical Biology 42, 563–585 (1973)

    Article  Google Scholar 

  27. Thomas, R.: On the relation between the logical structure of systems and their ability to generate multiple steady states or sustained oscillations. In: Numerical Methods in the Study of Critical Phenomena. Springer Series in Synergetics, vol. 9, pp. 180–193. Springer (1981)

    Google Scholar 

  28. Thomas, R.: Regulatory networks seen as asynchronous automata: a logical description. Journal of Theoretical Biology 153, 1–23 (1991)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Melliti, T., Regnault, D., Richard, A., Sené, S. (2013). On the Convergence of Boolean Automata Networks without Negative Cycles. In: Kari, J., Kutrib, M., Malcher, A. (eds) Cellular Automata and Discrete Complex Systems. AUTOMATA 2013. Lecture Notes in Computer Science, vol 8155. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40867-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40867-0_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40866-3

  • Online ISBN: 978-3-642-40867-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics