Skip to main content

A Micro-wires Based Tactile Sensor for Prosthesis

  • Conference paper
Intelligent Robotics and Applications (ICIRA 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8102))

Included in the following conference series:

Abstract

Tactile sensor is indispensable in prosthesis for object manipulation. This study presented a novel tactile sensor based on the conductive micro-wires that can measure the normal and shear forces. The developed sensor consists of four layers, from bottom to top are the substrate supporting, polyimide based matrix circuit, micro-wire based sensing, and top surface bump layers, respectively. To improve the sensing performance, structural dimensions were optimized. According to the optimization results, analytical models and finite element analysis (FEA) were conducted to study the normal and shear force sensing performance of the sensor. To develop the tactile sensor, the carbon-black based conductive polymer was firstly fabricated, and then the conductive micro-wires were manufactured by using the method of micro-contact printing (μCP). The results demonstrate that the machined micro-wires have dimensions of 250 μm in width and 50 μm in height.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kim, K., Lee, K.R., Kim, W.H.: Polymer-based flexible tactile sensor up to 32×32 arrays integrated with interconnection terminals. Sens. Actuators A: Phys. 156, 284–291 (2009)

    Article  Google Scholar 

  2. Noda, K., Hoshino, K., Matsumoto, K.: A shear stress sensor for tactile sensing with the piezoresistive cantilever standing in elastic material. Sens. Actuators A: Phys. 127, 295–301 (2006)

    Article  Google Scholar 

  3. Yu, S., Chang, D., Tsao, L.: Porous nylon with electro-active dopants as flexible sensors and actuators. In: Proceedings of the IEEE 21st International Conference on Micro Electro Mechanical Systems (MEMS), Tucson, AZ, USA, pp. 908–911 (2008)

    Google Scholar 

  4. Lee, H., Chung, J., Chang, S.: Normal and shear force measurement using a flexible polymer tactile sensor with embedded multiple capacitors. J. Microelectromech. Syst. 17, 934–942 (2008)

    Article  Google Scholar 

  5. Ying, M., Bonifas, A.P., Lu, N.: Silicon nanomembranes for fingertip electronics. Nanotechnology 23(34), 344004-1 (2012)

    Google Scholar 

  6. Hosoda, K., Tada, Y., Asada, M.: Anthropomorphic robotic soft fingertip with randomly distributed receptors. Robot Auton. Syst. 54, 104–109 (2006)

    Article  Google Scholar 

  7. Dahiya, R.S., Valle, M., Metta, G.: Bio-inspired tactile sensing arrays. In: Proceedings of Bioengineered and Bioinspired Systems IV, Dresden, Germany, pp. 73650D-9 (2009)

    Google Scholar 

  8. Hoshino, K., Mori, D.: Three-dimensional tactile sensor with thin and soft elastic body. In: Proceedings of the IEEE Workshop on Advanced Robotics and Its Social Impacts, Taipei, Taiwan, pp. 1–6 (2008)

    Google Scholar 

  9. Mannsfeld, S.C.B., Tee, B.C., Stoltenberg, R.M.: Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nat. Mater. 9(10), 859–864 (2010)

    Article  Google Scholar 

  10. Kawaguchi, H., Someya, T., Sekitani, T.: Cut-and-paste customization of organic FET integrated circuit and its application to electronic artificial skin. In: IEEE International Solid-State Circuits Conference, San Francisco, Canada, vol. 40(1), pp. 177–185 (2005)

    Google Scholar 

  11. Someya, T., Kato, Y., Sekitani, T.: Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes. Proc. Natl. Acad. Sci. 102(35), 12321–12325 (2005)

    Article  Google Scholar 

  12. Takei, K., Takahashi, T., Ho, J.C.: Nanowire active-matrix circuitry for low-voltage macroscale artificial skin. Nat. Mater. 9(10), 821–826 (2010)

    Article  Google Scholar 

  13. Liang, G., Mei, D., Wang, Y., Dai, Y., Chen, Z.: Design and simulation of bio-inspired flexible tactile sensor for prosthesis. In: Su, C.-Y., Rakheja, S., Liu, H. (eds.) ICIRA 2012, Part III. LNCS (LNAI), vol. 7508, pp. 32–41. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  14. Xia, Y.N., Whitesides, G.M.: Soft Lithography. Annu. Rev. Mater. Sci. 28, 153–184 (1998)

    Article  Google Scholar 

  15. Zhong, C., Kapetanovic, A., Deng, Y.: A Chitin Nanofi ber Ink for Airbrushing, Replica Molding, and Microcontact Printing of Self-assembled Macro-,Micro-, and Nanostructures. Adv. Mater. 23, 4776–4781 (2011)

    Article  Google Scholar 

  16. Chakra, E.B., Hannes, B., Dilosquer, G.: A new instrument for automated microcontact printing with stamp load adjustment. Review of Scientific Instruments 79, 64101–64102 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liang, G., Mei, D., Wang, Y., Dai, Y., Chen, Z. (2013). A Micro-wires Based Tactile Sensor for Prosthesis. In: Lee, J., Lee, M.C., Liu, H., Ryu, JH. (eds) Intelligent Robotics and Applications. ICIRA 2013. Lecture Notes in Computer Science(), vol 8102. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40852-6_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40852-6_48

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40851-9

  • Online ISBN: 978-3-642-40852-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics