Skip to main content

Neuro Invasive Multi-targeted Drug Delivery Approach Using Swarm of Nano-robotic Carriers

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8102))

Abstract

This research presents multipath planning scheme for drug loaded nano carriers (virtual robots) based targeted drug delivery. Initially, magnetic field based local path planner algorithm is investigated for its viability within CNS (Central Nervous System) brain capillaries. Furthermore, Optimized Swarm based technologies in hybrid with the local path planner is applied to deal with the complexity of the neuronal blood capillaries system. Globally optimized swarm trajectories for the nano carriers to target multiple neuro-invasive diseases are obtained as a result from the proposed approach. For demonstration purpose the presented scheme is simulated in a 3d virtual environment, results showed that the optimized swarming was successfully performed in closer to real-time (online). Moreover, the drug delivery performance of the carrier robots was more targeted (directional path) and shorter in length and in uniform velocity keeping the overall drug release time controlled than the conventional (oral \ intravenous) drug delivery procedures.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Frist, W.H.: Health care in the 21st century. New England Journal of Medicine 3, 267–272 (2005)

    Article  Google Scholar 

  2. LaVan, D.A., McGuire, T., Langer, R.: Small scale systems for in vivo drug delivery. Nature Biotechnol. 21, 1184–1191 (2003)

    Article  Google Scholar 

  3. Ikeda, S., Arai, F., Fukuda, T., Negoro, M., Irie, K., Takahashi, I.: Patient-specific neurovascular simulator for evaluating the performance of medical robots and instruments. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 625–630 (2006)

    Google Scholar 

  4. Andrews, R.J.: Neuroprotection at the nanolevel—Part I introduction to nanoneurosurgery. Annals of the New York Academy of Sciences, 169–184 (2007)

    Google Scholar 

  5. Chau, R., Doyle, B., Datta, S., Kavalieros, J., Zhang, K.: Integrated nanoelectronics for the future. Nature Materials 6, 810–812 (2007)

    Article  Google Scholar 

  6. Elder, J.B., Liu, C.Y., Apuzzo, M.L.J.: Neurosurgery in the realm of 10-9, Part 2: Applications of nanotechnology to neurosurgery-present and future. Neurosurgery 2, 269–284 (2008)

    Article  Google Scholar 

  7. Cavalcanti, A., Shirinzadeh, B., Freitas Jr., R.A., Hogg, T.: Nanorobot architecture for medical target identification. Nanotechnology 19, 15 (2008)

    Article  Google Scholar 

  8. Montemagno, C., Bachand, G.: Constructing nanomechanical devices powered by biomolecular motors. Nanotechnology 3, 225 (1999)

    Article  Google Scholar 

  9. Hill, C., Amodeo, A., Joseph, J.V., Patel, H.R.H.: Nano and microrobotics: how far is reality. Expert Rev., Anticaner Ther. 8, 1891–1897 (2008)

    Article  Google Scholar 

  10. Furlani, E.J., Furlani, E.P.: A model for predicting magnetic targeting of multifunctional particles in the microvasculature. Journal of Magnetism and Magnetic Materials 312(1), 187–193 (2007)

    Article  Google Scholar 

  11. Vartholomeos, P., Mavroidis, C.: Magnetic targeting of aggregated nanoparticles for advanced lung therapies: A robotics approach. In: Proceedings of the 3rd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics, Tokyo, pp. 861–868 (2010)

    Google Scholar 

  12. Cherry, E.M., Maxim, P.G., Eaton, J.K.: Particle size, magnetic field, and blood velocity effects on particle retention in magnetic drug targeting. Med. Phys. 37(1), 175–182 (2010)

    Article  Google Scholar 

  13. David, E., Cole, A.J., Chertok, B., Park, Y.S., Yang, V.C.: A combined theoretical and in vitro modeling approach for predicting the magnetic capture and retention of magnetic nanoparticles in vivo. Journal of Controlled Release 152(1), 67–75 (2011)

    Article  Google Scholar 

  14. Yue, P., Lee, S., Afkhami, S., Renardy, Y.: On the motion of super-paramagnetic particles in magnetic drug targeting. Acta Mechanica 223(3), 505–527 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Heidsieck, A., Vosen, S., Zimmermann, K., Wenzel, D., Gleich, B.: Analysis of Trajectories for Targeting of Magnetic Nanoparticles in Blood Vessels. Mol. Pharmaceutics 9, 2029–2038 (2012)

    Article  Google Scholar 

  16. Kennedy, J., Eberhart, R.: Particle Swarm Optimization. In: Proceedings of the IEEE International Conference on Neural Networks, Tokyo, pp. 1942–1948 (1995)

    Google Scholar 

  17. Tabatabaei, S.N., Duchemin, S., Girouard, H., Martel, S.: Towards MR-navigable nanorobotic carriers for drug delivery into the brain. In: IEEE International Conference on Robotics and Automation (ICRA), May 14-18, pp. 727–732 (2012)

    Google Scholar 

  18. Fu, J., Yan, H.: Controlled drug release by a nanorobot. Nature Biotechnology 30, 407–408 (2012)

    Article  Google Scholar 

  19. Thammawongsa, N., Zainol, F.D., Mitatha, S., Ali, J., Yupapin, P.P.: Nanorobot Controlled by Optical Tweezer Spin for Microsurgical Use. IEEE Transactions on Nanotechnology 12(1), 29–34 (2013)

    Article  Google Scholar 

  20. Duncan, J.S., et al.: Adult epilepsy. Lancet (London, England) 367, 1087–1100 (2006)

    Article  Google Scholar 

  21. Prisco, L., et al.: Trigeminal neuralgia: successful antiepileptic drug combination therapy in three refractory cases. Drug, Healthcare and Patient Safety 3, 43 (2011)

    Article  Google Scholar 

  22. Vedula, S.S., Bero, L., Scherer, R.W., Dickersin, K.: Outcome reporting in industry-sponsored trials of gabapentin for off-label use. The New England Journal of Medicine 361(20), 1963–1971 (2009)

    Article  Google Scholar 

  23. Berchtold, N.C., Cotman, C.W.: Evolution in the Conceptualization of Dementia and Alzheimer’s disease. Greco-Roman Period to the 1960s. Neurobiol. Aging. 19(3), 173–189 (1998)

    Google Scholar 

  24. Samanta, M.K., et al.: Alzheimer disease and its management: a review. American Journal of Therapeutics 13(6), 516–526 (2006)

    Article  Google Scholar 

  25. Amatniek, J.C., Hauser, W.A., DelCastillo-Castaneda, C., Jacobs, D.M., Marder, K., Bell, K., Albert, M., Brandt, J., Stern, Y.: Incidence and predictors of seizures in patients with Alzheimer’s disease. Epilepsia 47, 867–872 (2006)

    Article  Google Scholar 

  26. Mendez, M.F., Catanzaro, P., Doss, R.C., Arquello, R., Frey, W.H.: Seizures in Alzheimer’s disease: Clinicopathologic study. J. Geriatr. Psychiatry Neurology 7, 230–233 (1994)

    Google Scholar 

  27. Galimberti, D., Scarpini, E.: Disease-modifying treatments for Alzheimer’s disease. Ther. Adv. Neurol. Disord. 4, 203–216 (2011)

    Google Scholar 

  28. Shah, M., et al.: Amphiphilic PHA–mPEG copolymeric nanocontainers for drug delivery: Preparation, characterization and in vitro evaluation. International Journal of Pharmaceutics 400(1), 165–175 (2010)

    Article  Google Scholar 

  29. Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robots. The International Journal of Robotics Research 5, 90–98 (1986)

    Article  Google Scholar 

  30. Park, M.G., Jeon, J.H., Lee, M.C.: Obstacle avoidance for mobile robots using artificial potential field approach with simulated annealing. In: Proceedings of the IEEE International Symposium on Industrial Electronics (ISIE 2001), vol. 3. IEEE (2001)

    Google Scholar 

  31. Abdel Wahid, M.H.M., McInnes Colin, R.: Wall following to escape local minima for swarms of agents using internal states and emergent behavior. In: International Conference of Computational Intelligence and Intelligent Systems (ICCIIS 2008) (2008)

    Google Scholar 

  32. Gleich, B., Hellwig, N., Bridell, H., Jurgons, R., Seliger, C., Alexiou, C., et al.: Design and evaluation of magnetic fields for nanoparticle drug targeting in cancer. IEEE Transactions on Nanotechnology 6, 164–170 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hassan, S., Ullah, I., Kim, M.O., Yoon, J. (2013). Neuro Invasive Multi-targeted Drug Delivery Approach Using Swarm of Nano-robotic Carriers. In: Lee, J., Lee, M.C., Liu, H., Ryu, JH. (eds) Intelligent Robotics and Applications. ICIRA 2013. Lecture Notes in Computer Science(), vol 8102. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40852-6_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40852-6_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40851-9

  • Online ISBN: 978-3-642-40852-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics