Skip to main content

Design and Manufacturing a Bio-inspired Variable Stiffness Mechanism in a Robotic Dolphin

  • Conference paper
Intelligent Robotics and Applications (ICIRA 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8103))

Included in the following conference series:

Abstract

To maximize the dynamic performance; especially swimming; of a robotic fish or an underwater vehicle, lots of research of mechanisms and actuators have been conducted. Among them, the compliance of the structure can help the robotic fish or the underwater robots to increase the thrust. Also, when oscillating frequency of a propulsion system increases, the stiffness of the caudal fin should increase to increase the thrust of the robotic fish. Therefore, the variable stiffness mechanism is needed to maximize the thrust of the robotic fish. In this paper, we present a design and manufacturing procedure using our bio-inspired variable stiffness mechanism which was developed before. We find the appropriate design of the bio-inspired variable stiffness mechanism for applying to a robotic dolphin. The novel variable stiffness mechanism was designed using the inspiration of anatomy of a fluke. Tendons which are used for changing the stiffness are arranged from dolphin’s anatomy. This design and manufacturing procedure can be helpful to some researchers who try to apply the variable stiffness mechanism using flexible material.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. United States. Naval Meteorology and Oceanography Command and Naval Research Laboratory (U.S.), Review of autonomous underwater vehicle (AUV) developments. Stennis Space Center, Miss.: Naval Oceanographic and Atmospheric Research Laboratory (2001)

    Google Scholar 

  2. Liang, J., Wang, T., Wen, L.: Development of a two-joint robotic fish for real-world exploration. Journal of Field Robotics 28(1), 70–79 (2011)

    Article  Google Scholar 

  3. Chu, W.-S., Lee, K.-T., Song, S.-H., Han, M.-W., Lee, J.-Y., Kim, H.-S., Kim, M.-S., Park, Y.-J., Cho, K.-J., Ahn, S.-H.: Review of biomimetic underwater robots using smart actuators. Int. J. Precis. Eng. Manuf. 13(7), 1281–1292 (2012)

    Article  Google Scholar 

  4. Esposito, C.J., Tangorra, J.L., Flammang, B.E., Lauder, G.V.: A robotic fish caudal fin: effects of stiffness and motor program on locomotor performance. The Journal of Experimental Biology 215(1), 56–67 (2012)

    Article  Google Scholar 

  5. Tangorra, J., Phelan, C., Esposito, C., Lauder, G.: Use of Biorobotic Models of Highly Deformable Fins for Studying the Mechanics and Control of Fin Forces in Fishes. Integrative and Comparative Biology 51(1), 176–189 (2011)

    Article  Google Scholar 

  6. Lauder, G.V., Lim, J., Shelton, R., Witt, C., Anderson, E., Tangorra, J.L.: Robotic Models for Studying Undulatory Locomotion in Fishes. Marine Technology Society Journal 45(4), 41–55 (2011)

    Article  Google Scholar 

  7. Valdivia Y Alvarado, P., Youcef-Toumi, K.: Design of Machines With Compliant Bodies for Biomimetic Locomotion in Liquid Environments. J. Dyn. Sys., Meas., Control 128(1), 3–13 (2006)

    Google Scholar 

  8. Valdivia Y Alvarado, P., Youcef-Toumi, K.: Performance of machines with flexible bodies designed for biomimetic locomotion in liquid environments, pp. 3324–3329 (2010)

    Google Scholar 

  9. Daou, H.E., Salumae, T., Ristolainen, A., Toming, G., Listak, M., Kruusmaa, M.: A bio-mimetic design of a fish-like robot with compliant tail. Presented at the International Workshop on Bio-Inspired Robots (2011)

    Google Scholar 

  10. Low, K.H., Chong, C.W.: Parametric study of the swimming performance of a fish robot propelled by a flexible caudal fin. Bioinspir. Biomim. 5(4), 046002 (2010)

    Article  Google Scholar 

  11. Yamamoto, I., Terada, Y., Nagamatu, T., Imaizumi, Y.: Propulsion system with flexible/rigid oscillating fin. IEEE J. Oceanic Eng. 20(1), 23–30 (1995)

    Article  Google Scholar 

  12. Ahlborn, B., Chapman, S., Stafford, R., Harper, R.: Experimental simulation of the thrust phases of fast-start swimming of fish. J. Exp. Biol. 200(17), 2301–2312 (1997)

    Google Scholar 

  13. Park, Y.-J., Jeong, U., Lee, J., Kwon, S.-R., Kim, H.-Y., Cho, K.-J.: Kinematic Condition for Maximizing the Thrust of a Robotic Fish Using a Compliant Caudal Fin. IEEE Transactions on Robotics 28(6), 1216–1227 (2012)

    Article  Google Scholar 

  14. Kawamura, S., Yamamoto, T., Ishida, D., Ogata, T., Nakayama, Y., Tabata, O., Sugiyama, S.: Development of passive elements with variable mechanical impedance for wearable robots. In: Proceedings - IEEE International Conference on Robotics and Automation, vol. 1, pp. 248–253 (2002)

    Google Scholar 

  15. Mitsuda, T., Kuge, S., Wakabayashi, M., Kawamura, S.: Haptic displays implemented by controllable passive elements. In: Proceedings - IEEE International Conference on Robotics and Automation, vol. 4, pp. 4223–4228 (2002)

    Google Scholar 

  16. Nakabayashi, M., Kobayashi, R., Kobayashi, S., Morikawa, H.: Bioinspired propulsion mechanism using a fin with a dynamic variable-effective-length spring: Evaluation of thrust characteristics and flow around a fin in a uniform flow. Journal of Biomechanical Science and Engineering 4(1), 82–93 (2009)

    Article  Google Scholar 

  17. Huh, T.M., Park, Y.-J., Cho, K.-J.: Design and analysis of a stiffness adjustable structure using an endoskeleton. Int. J. Precis. Eng. Manuf. 13(7), 1255–1258 (2012)

    Article  Google Scholar 

  18. Sun, Q., Morikawa, H., Kobayashi, S., Ueda, K., Miyahara, H., Nakashima, M.: Structure and Bending Properties of Central Part of Tail Fin of Dolphin. Journal of Biomechanical Science and Engineering 5(4), 388–398 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Park, YJ., Cho, KJ. (2013). Design and Manufacturing a Bio-inspired Variable Stiffness Mechanism in a Robotic Dolphin. In: Lee, J., Lee, M.C., Liu, H., Ryu, JH. (eds) Intelligent Robotics and Applications. ICIRA 2013. Lecture Notes in Computer Science(), vol 8103. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40849-6_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40849-6_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40848-9

  • Online ISBN: 978-3-642-40849-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics