Skip to main content

Spatio-temporal Data Mining for Climate Data: Advances, Challenges, and Opportunities

  • Chapter
Book cover Data Mining and Knowledge Discovery for Big Data

Part of the book series: Studies in Big Data ((SBD,volume 1))

Abstract

Our planet is experiencing simultaneous changes in global population, urbanization, and climate. These changes, along with the rapid growth of climate data and increasing popularity of data mining techniques may lead to the conclusion that the time is ripe for data mining to spur major innovations in climate science. However, climate data bring forth unique challenges that are unfamiliar to the traditional data mining literature, and unless they are addressed, data mining will not have the same powerful impact that it has had on fields such as biology or e-commerce. In this chapter, we refer to spatio-temporal data mining (STDM) as a collection of methods that mine the data’s spatio-temporal context to increase an algorithm’s accuracy, scalability, or interpretability (relative to non-space-time aware algorithms).We highlight some of the singular characteristics and challenges STDM faces within climate data and their applications, and provide the reader with an overview of the advances in STDM and related climate applications. We also demonstrate some of the concepts introduced in the chapter’s earlier sections with a real-world STDM pattern mining application to identify mesoscale ocean eddies from satellite data. The case-study provides the reader with concrete examples of challenges faced when mining climate data and how effectively analyzing the data’s spatio-temporal context may improve existing methods’ accuracy, interpretability, and scalability. We end the chapter with a discussion of notable opportunities for STDM research within climate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anbaroğlu, T.C.B.: Spatio-temporal outlier detection in environmental data. Spatial and Temporal Reasoning for Ambient Intelligence Systems, 1–9 (2009)

    Google Scholar 

  2. Arenas, A., Díaz-Guilera, A., Kurths, J., Moreno, Y., Zhou, C.: Synchronization in complex networks. Physics Reports 469(3), 93–153 (2008)

    Article  MathSciNet  Google Scholar 

  3. Bain, C.L., De Paz, J., Kramer, J., Magnusdottir, G., Smyth, P., Stern, H., Wang, C.-C.: Detecting the itcz in instantaneous satellite data using spatiotemporal statistical modeling: Itcz climatology in the east pacific. Journal of Climate 24(1), 216–230 (2011)

    Article  Google Scholar 

  4. Baldocchi, D., Falge, E., Gu, L., Olson, R., Hollinger, D., Running, S., Anthoni, P., Bernhofer, C., Davis, K., Evans, R., et al.: Fluxnet: a new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bulletin of the American Meteorological Society 82(11), 2415–2434 (2001)

    Article  Google Scholar 

  5. Barua, S., Alhajj, R.: Parallel wavelet transform for spatio-temporal outlier detection in large meteorological data. In: Yin, H., Tino, P., Corchado, E., Byrne, W., Yao, X. (eds.) IDEAL 2007. LNCS, vol. 4881, pp. 684–694. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  6. Basak, J., Sudarshan, A., Trivedi, D., Santhanam, M.: Weather data mining using independent component analysis. The Journal of Machine Learning Research 5, 239–253 (2004)

    MathSciNet  Google Scholar 

  7. Berezin, Y., Gozolchiani, A., Guez, O., Havlin, S.: Stability of climate networks with time. Scientific Reports 2 (2012)

    Google Scholar 

  8. Boriah, S., Kumar, V., Steinbach, M., Potter, C., Klooster, S.: Land cover change detection: a case study. In: Proceeding of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 857–865. ACM (2008)

    Google Scholar 

  9. Braverman, A., Fetzer, E.: Mining massive earth science data sets for large scale structure. In: Proceedings of the Earth-Sun System Technology Conference (2005)

    Google Scholar 

  10. Camargo, S.J., Robertson, A.W., Gaffney, S.J., Smyth, P., Ghil, M.: Cluster analysis of typhoon tracks. part i: General properties. Journal of Climate 20(14), 3635–3653 (2007a)

    Article  Google Scholar 

  11. Camargo, S.J., Robertson, A.W., Gaffney, S.J., Smyth, P., Ghil, M.: Cluster analysis of typhoon tracks. part ii: Large-scale circulation and enso. Journal of Climate 20(14), 3654–3676 (2007b)

    Article  Google Scholar 

  12. Chamber, Y., Garg, A., Mithal, V., Brugere, I., Lau, M., Krishna, V., Boriah, S., Steinbach, M., Kumar, V., Potter, C., Klooster, S.A.: A novel time series based approach to detect gradual vegetation changes in forests. In: CIDU 2011: Proceedings of the NASA Conference on Intelligent Data Understanding, pp. 248–262 (2011)

    Google Scholar 

  13. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection for discrete sequences: A survey. IEEE Transactions on Knowledge and Data Engineering 24(5), 823–839 (2012)

    Article  Google Scholar 

  14. Chatterjee, S., Steinhaeuser, K., Banerjee, A., Chatterjee, S., Ganguly, A.: Sparse group lasso: Consistency and climate applications. In: SDM (2012)

    Google Scholar 

  15. Chelton, D., Schlax, M., Samelson, R., de Szoeke, R.: Global observations of large oceanic eddies. Geophysical Research Letters 34, L15606 (2007)

    Google Scholar 

  16. Chelton, D., Schlax, M., Samelson, R.: Global observations of nonlinear mesoscale eddies. Progress in Oceanography (2011a)

    Google Scholar 

  17. Chelton, D.B., Gaube, P., Schlax, M.G., Early, J.J., Samelson, R.M.: The influence of nonlinear mesoscale eddies on near-surface oceanic chlorophyll. Science 334(6054), 328–332 (2011b)

    Article  Google Scholar 

  18. Chen, Y., Randerson, J.T., Morton, D.C., DeFries, R.S., Collatz, G.J., Kasibhatla, P.S., Giglio, L., Jin, Y., Marlier, M.E.: Forecasting fire season severity in south america using sea surface temperature anomalies. Science 334(6057), 787–791 (2011)

    Article  Google Scholar 

  19. Cheng, T., Li, Z.: A multiscale approach for spatio-temporal outlier detection. Transactions in GIS 10(2), 253–263 (2006)

    Article  Google Scholar 

  20. Chou, P.A., Lookabaugh, T., Gray, R.M.: Entropy-constrained vector quantization. IEEE Transactions on Acoustics, Speech and Signal Processing 37(1), 31–42 (1989)

    Article  MathSciNet  Google Scholar 

  21. Clark, P., Matwin, S.: Using qualitative models to guide inductive learning. In: Proceedings of the Tenth International Conference on Machine Learning, pp. 49–56 (1993)

    Google Scholar 

  22. Clearwater, S.H., Provost, F.J.: Rl4: A tool for knowledge-based induction. In: Proceedings of the 2nd International IEEE Conference on Tools for Artificial Intelligence, pp. 24–30. IEEE (1990)

    Google Scholar 

  23. Coe, R., Stern, R.: Fitting models to daily rainfall data. Journal of Applied Meteorology 21(7), 1024–1031 (1982)

    Article  Google Scholar 

  24. Cox, D., Isham, V.: A simple spatial-temporal model of rainfall. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences 415(1849), 317–328 (1988)

    Article  MathSciNet  Google Scholar 

  25. Cressie, N., Wikle, C.K.: Statistics for spatio-temporal data, vol. 465. Wiley (2011)

    Google Scholar 

  26. Cressie, N., Assunçao, R., Holan, S.H., Levine, M., Zhang, J., Samsi, C.-N.: Dynamical random-set modeling of concentrated precipitation in north america. Statistics and its Interface (2011)

    Google Scholar 

  27. Domingos, P.: Occam’s two razors: The sharp and the blunt. In: Proceedings of the Fourth International Conference on Knowledge Discovery and Data Mining, pp. 37–43. AAAI Press (1998)

    Google Scholar 

  28. Dong, C., Nencioli, F., Liu, Y., McWilliams, J.: An automated approach to detect oceanic eddies from satellite remotely sensed sea surface temperature data. IEEE Geoscience and Remote Sensing Letters (99), 1–5 (2011)

    Google Scholar 

  29. Donges, J.F., Zou, Y., Marwan, N., Kurths, J.: The backbone of the climate network. EPL (Europhysics Letters) 87(4), 48007 (2009a)

    Article  Google Scholar 

  30. Donges, J.F., Zou, Y., Marwan, N., Kurths, J.: Complex networks in climate dynamics. The European Physical Journal-Special Topics 174(1), 157–179 (2009b)

    Article  Google Scholar 

  31. Effron, B., Tibshirani, R.: Statistical data analysis in the computer age. Science 253(5018), 390–395 (1991)

    Article  Google Scholar 

  32. Elsner, J., Jagger, T., Fogarty, E.: Visibility network of united states hurricanes. Geophysical Research Letters 36(16), L16702 (2009)

    Google Scholar 

  33. Emanuel, K.: The hurricane-climate connection. Bulletin of the American Meteorological Society 89(5) (2008)

    Google Scholar 

  34. Faghmous, J., Chamber, Y., Vikebø, F., Boriah, S., Liess, S., dos Santos Mesquita, M., Kumar, V.: A novel and scalable spatio-temporal technique for ocean eddy monitoring. In: Twenty-Sixth Conference on Artificial Intelligence, AAAI 2012 (2012a)

    Google Scholar 

  35. Faghmous, J.H., Styles, L., Mithal, V., Boriah, S., Liess, S., Vikebo, F., dos Santos Mesquita, M., Kumar, V.: Eddyscan: A physically consistent ocean eddy monitoring application. In: 2012 Conference on Intelligent Data Understanding (CIDU), pp. 96–103 (2012b)

    Google Scholar 

  36. Faloutsos, C., Ranganathan, M., Manolopoulos, Y.: Fast subsequence matching in time-series databases, vol. 23. ACM (1994)

    Google Scholar 

  37. Fernandes, A.M.: Identification of oceanic eddies in satellite images. In: Bebis, G., et al. (eds.) ISVC 2008, Part II. LNCS, vol. 5359, pp. 65–74. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  38. Fogarty, E.A., Elsner, J.B., Jagger, T.H., Tsonis, A.A.: Network analysis of us hurricanes. Hurricanes and Climate Change, 153–167 (2009)

    Google Scholar 

  39. Foley, J.A.: Can we feed the world & sustain the planet? Scientific American 305(5), 60–65 (2011)

    Article  MathSciNet  Google Scholar 

  40. Fu, L., Chelton, D., Le Traon, P., Morrow, R.: Eddy dynamics from satellite altimetry. Oceanography 23(4), 14–25 (2010)

    Article  Google Scholar 

  41. Fu, Q., Banerjee, A., Liess, S., Snyder, P.K.: Drought detection of the last century: An mrf-based approach. In: Proceedings of the SIAM International Conference on Data Mining (2012)

    Google Scholar 

  42. Gaffney, S.J., Robertson, A.W., Smyth, P., Camargo, S.J., Ghil, M.: Probabilistic clustering of extratropical cyclones using regression mixture models. Climate Dynamics 29(4), 423–440 (2007)

    Article  Google Scholar 

  43. Ghosh, S., Das, D., Kao, S.-C., Ganguly, A.R.: Lack of uniform trends but increasing spatial variability in observed indian rainfall extremes. Nature Climate Change (2011)

    Google Scholar 

  44. Goldenberg, S., Shapiro, L.: Physical mechanisms for the association of el niño and west african rainfall with atlantic major hurricane activity. Journal of Climate 9(6), 1169–1187 (1996)

    Article  Google Scholar 

  45. Guez, O., Gozolchiani, A., Berezin, Y., Brenner, S., Havlin, S.: Climate network structure evolves with north atlantic oscillation phases. EPL (Europhysics Letters) 98(3), 38006 (2012)

    Article  Google Scholar 

  46. Hastie, T., Tibshirani, R., Friedman, J., Franklin, J.: The elements of statistical learning: data mining, inference and prediction. The Mathematical Intelligencer 27(2), 83–85 (2005)

    Article  Google Scholar 

  47. Henke, D., Smyth, P., Haffke, C., Magnusdottir, G.: Automated analysis of the temporal behavior of the double intertropical convergence zone over the east pacific. Remote Sensing of Environment 123, 418–433 (2012)

    Article  Google Scholar 

  48. Hoffman, F.M., Hargrove Jr., W.W., Erickson III, D.J., Oglesby, R.J.: Using clustered climate regimes to analyze and compare predictions from fully coupled general circulation models. Earth Interactions 9(10), 1–27 (2005)

    Article  Google Scholar 

  49. Hoyos, C., Agudelo, P., Webster, P., Curry, J.: Deconvolution of the factors contributing to the increase in global hurricane intensity. Science 312(5770), 94 (2006)

    Article  Google Scholar 

  50. Huang, H.-C., Cressie, N.: Spatio-temporal prediction of snow water equivalent using the kalman filter. Computational Statistics & Data Analysis 22(2), 159–175 (1996)

    Article  MathSciNet  Google Scholar 

  51. Karpatne, A., Blank, M., Lau, M., Boriah, S., Steinhaeuser, K., Steinbach, M., Kumar, V.: Importance of vegetation type in forest cover estimation. In: CIDU, pp. 71–78 (2012)

    Google Scholar 

  52. Kawale, J., Steinbach, M., Kumar, V.: Discovering dynamic dipoles in climate data. In: SIAM International Conference on Data mining, SDM. SIAM (2011)

    Google Scholar 

  53. Kawale, J., Chatterjee, S., Ormsby, D., Steinhaeuser, K., Liess, S., Kumar, V.: Testing the significance of spatio-temporal teleconnection patterns. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 642–650. ACM (2012)

    Google Scholar 

  54. Kim, M., Han, J.: A particle-and-density based evolutionary clustering method for dynamic networks. Proceedings of the VLDB Endowment 2(1), 622–633 (2009)

    Google Scholar 

  55. Lamb, P.J., Peppler, R.A.: North atlantic oscillation: Concept and an application. Bulletin of the American Meteorological Society 68, 1218–1225 (1987)

    Article  Google Scholar 

  56. Laxman, S., Sastry, P.S.: A survey of temporal data mining. Sadhana 31(2), 173–198 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  57. Lee, Y., Buchanan, B.G., Aronis, J.M.: Knowledge-based learning in exploratory science: Learning rules to predict rodent carcinogenicity. Machine Learning 30(2), 217–240 (1998)

    Article  Google Scholar 

  58. Livezey, R., Chen, W.: Statistical field significance and its determination by monte carlo techniques (in meteorology). Monthly Weather Review 111, 46–59 (1983)

    Article  Google Scholar 

  59. McGillicuddy Jr., D.: Eddies masquerade as planetary waves. Science 334(6054), 318–319 (2011)

    Article  Google Scholar 

  60. McGuire, M.P., Janeja, V.P., Gangopadhyay, A.: Spatiotemporal neighborhood discovery for sensor data. In: Gaber, M.M., Vatsavai, R.R., Omitaomu, O.A., Gama, J., Chawla, N.V., Ganguly, A.R. (eds.) Sensor-KDD 2008. LNCS, vol. 5840, pp. 203–225. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  61. Mesrobian, E., Muntz, R., Shek, E., Santos, J., Yi, J., Ng, K., Chien, S.-Y., Mechoso, C., Farrara, J., Stolorz, P., et al.: Exploratory data mining and analysis using conquest. In: Proceedings of the IEEE Pacific Rim Conference on Communications, Computers, and Signal Processing, pp. 281–286. IEEE (1995)

    Google Scholar 

  62. Mesrobian, E., Muntz, R., Shek, E., Nittel, S., La Rouche, M., Kriguer, M., Mechoso, C., Farrara, J., Stolorz, P., Nakamura, H.: Mining geophysical data for knowledge. IEEE Expert 11(5), 34–44 (1996)

    Article  Google Scholar 

  63. Mestas-Nuñez, A.M., Enfield, D.B.: Rotated global modes of non-enso sea surface temperature variability. Journal of Climate 12(9), 2734–2746 (1999)

    Article  Google Scholar 

  64. Mithal, V., Garg, A., Brugere, I., Boriah, S., Kumar, V., Steinbach, M., Potter, C., Klooster, S.: Incorporating natural variation into time-series based land cover change identification. In: Proceeding of the 2011 NASA Conference on Intelligent Data Understanding, CIDU (2011a)

    Google Scholar 

  65. Mithal, V., Garg, A., Boriah, S., Steinbach, M., Kumar, V., Potter, C., Klooster, S., Castilla-Rubio, J.C.: Monitoring global forest cover using data mining. ACM Transactions on Intelligent Systems and Technology (TIST) 2(4), 36 (2011b)

    Google Scholar 

  66. Mithal, V., Khandelwal, A., Boriah, S., Steinhauser, K., Kumar, V.: Change detection from temporal sequences of class labels: Application to land cover change mapping. In: SIAM International Conference on Data mining, SDM. SIAM (2013)

    Google Scholar 

  67. Neill, D., Moore, A., Cooper, G.: A bayesian spatial scan statistic. In: Advances in Neural Information Processing Systems 18, p. 1003 (2006)

    Google Scholar 

  68. Neill, D.B., Moore, A.W., Sabhnani, M., Daniel, K.: Detection of emerging space-time clusters. In: Proceedings of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data Mining, pp. 218–227. ACM (2005)

    Google Scholar 

  69. Overpeck, J., Meehl, G., Bony, S., Easterling, D.: Climate data challenges in the 21st century. Science 331(6018), 700 (2011)

    Article  Google Scholar 

  70. Paluš, M., Hartman, D., Hlinka, J., Vejmelka, M.: Discerning connectivity from dynamics in climate networks. Nonlinear Processes Geophys. 18 (2011)

    Google Scholar 

  71. Pegau, W., Boss, E., Martínez, A.: Ocean color observations of eddies during the summer in the gulf of california. Geophysical Research Letters 29(9), 1295 (2002)

    Article  Google Scholar 

  72. Rakthanmanon, T., Campana, B., Mueen, A., Batista, G., Westover, B., Zhu, Q., Zakaria, J., Keogh, E.: Searching and mining trillions of time series subsequences under dynamic time warping. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 262–270. ACM (2012)

    Google Scholar 

  73. Ramachandran, R., Rushing, J., Conover, H., Graves, S., Keiser, K.: Flexible framework for mining meteorological data. In: Proceedings of the 19th Conference on Interactive Information and Processing Systems for Meteorology, Oceanography, and Hydrology (2003)

    Google Scholar 

  74. Richardson, P.: Eddy kinetic energy in the north atlantic from surface drifters. Journal of Geophysical Research 88(C7), 4355–4367 (1983)

    Article  Google Scholar 

  75. Scheffer, M., Carpenter, S., Foley, J.A., Folke, C., Walker, B., et al.: Catastrophic shifts in ecosystems. Nature 413(6856), 591–596 (2001)

    Article  Google Scholar 

  76. Sencan, H., Chen, Z., Hendrix, W., Pansombut, T., Semazzi, F.H.M., Choudhary, A.N., Kumar, V., Melechko, A.V., Samatova, N.F.: Classification of emerging extreme event tracks in multivariate spatio-temporal physical systems using dynamic network structures: Application to hurricane track prediction. In: IJCAI, pp. 1478–1484 (2011)

    Google Scholar 

  77. Shekhar, S., Vatsavai, R.R., Celik, M.: Spatial and spatiotemporal data mining: Recent advances. Data Mining: Next Generation Challenges and Future Directions (2008)

    Google Scholar 

  78. Smith, R., Robinson, P.: A bayesian approach to the modeling of spatial-temporal precipitation data. In: Case Studies in Bayesian Statistics, pp. 237–269. Springer (1997)

    Google Scholar 

  79. Srikanthan, R., McMahon, T., et al.: Stochastic generation of annual, monthly and daily climate data: A review. Hydrology and Earth System Sciences Discussions 5(4), 653–670 (2001)

    Article  Google Scholar 

  80. Steinbach, M., Tan, P.-N., Kumar, V., Klooster, S., Potter, C.: Discovery of climate indices using clustering. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 446–455. ACM (2003)

    Google Scholar 

  81. Steinhaeuser, K., Chawla, N.V., Ganguly, A.R.: Complex networks in climate science: progress, opportunities and challenges. In: NASA Conf. on Intelligent Data Understanding, Mountain View, CA (2010)

    Google Scholar 

  82. Stolorz, P., Dean, C.: Quakefinder: A scalable data mining system for detecting earthquakes from space. In: Proceedings of the Second International Conference on Knowledge Discovery and Data Mining (KDD 1996), pp. 208–213 (1996)

    Google Scholar 

  83. Stolorz, P., Mesrobian, E., Muntz, R., Santos, J., Shek, E., Yi, J., Mechoso, C., Farrara, J.: Fast spatio-temporal data mining from large geophysical datasets. In: Proceedings of the International Conference on Knowledge Discovery and Data Mining, pp. 300–305 (1995)

    Google Scholar 

  84. Sugihara, G., May, R.: Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series. Nature 344(19), 734–741 (1990)

    Article  Google Scholar 

  85. Taubenböck, H., Esch, T., Felbier, A., Wiesner, M., Roth, A., Dech, S.: Monitoring urbanization in mega cities from space. Remote Sensing of Environment (2011)

    Google Scholar 

  86. Team, C.W.: Climate Change 2007: Synthesis Report. Contribution of Working Groups I, Ii and Iii to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Ipcc, Geneva, Switzerland (2007)

    Google Scholar 

  87. Tobler, W.R.: A computer movie simulating urban growth in the detroit region. Economic Geography 46, 234–240 (1970)

    Article  Google Scholar 

  88. Tsonis, A., Roebber, P.: The architecture of the climate network. Physica A: Statistical Mechanics and its Applications 333, 497–504 (2004)

    Article  Google Scholar 

  89. Tsonis, A.A., Swanson, K.L., Roebber, P.J.: What do networks have to do with climate? Bulletin of the American Meteorological Society 87(5), 585–596 (2006)

    Article  Google Scholar 

  90. Tsonis, A.A., Swanson, K.L., Wang, G.: On the role of atmospheric teleconnections in climate. Journal of Climate 21(12), 2990–3001 (2008)

    Article  Google Scholar 

  91. Ulbrich, U., Leckebusch, G., Pinto, J.: Extra-tropical cyclones in the present and future climate: a review. Theoretical and Applied Climatology 96(1), 117–131 (2009)

    Article  Google Scholar 

  92. Van Leeuwen, T.T., Frank, A.J., Jin, Y., Smyth, P., Goulden, M.L., van der Werf, G.R., Randerson, J.T.: Optimal use of land surface temperature data to detect changes in tropical forest cover. Journal of Geophysical Research 116(G2), G02002 (2011)

    Article  Google Scholar 

  93. Wainwright, M.J., Jordan, M.I.: Graphical models, exponential families, and variational inference. Foundations and Trends® in Machine Learning 1(1-2), 1–305 (2008)

    MATH  Google Scholar 

  94. Watts, D., Strogatz, S.: The small world problem. Collective Dynamics of Small-World Networks 393, 440–442 (1998)

    Google Scholar 

  95. Webster, P.J., Holland, G.J., Curry, A., Chang, H.: Changes in tropical cyclone number, duration, and intensity in a warming environment. Science 309(5742), 1844–1846 (2005)

    Article  Google Scholar 

  96. White, M.A., Hoffman, F., Hargrove, W.W., Nemani, R.R.: A global framework for monitoring phenological responses to climate change. Geophysical Research Letters 32(4), L04705 (2005)

    Google Scholar 

  97. Wilks, D.S.: Statistical methods in the atmospheric sciences. Academic press (2006)

    Google Scholar 

  98. Woolhiser, D.A.: Modeling daily precipitation progress and problems. In: Walden, A., Guttorp, P. (eds.) Statistics in the Environmental and Earth Sciences. Edward Arnold, London (1992)

    Google Scholar 

  99. Wu, E., Liu, W., Chawla, S.: Spatio-temporal outlier detection in precipitation data. In: Gaber, M.M., Vatsavai, R.R., Omitaomu, O.A., Gama, J., Chawla, N.V., Ganguly, A.R. (eds.) Sensor-KDD 2008. LNCS, vol. 5840, pp. 115–133. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  100. Wu, E., Liu, W., Chawla, S.: Spatio-temporal outlier detection in precipitation data. In: Gaber, M.M., Vatsavai, R.R., Omitaomu, O.A., Gama, J., Chawla, N.V., Ganguly, A.R. (eds.) Sensor-KDD 2008. LNCS, vol. 5840, pp. 115–133. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  101. Wyrtki, K., Magaard, L., Hager, J.: Eddy energy in the oceans. Journal of Geophysical Research 81(15), 2641–2646 (1976)

    Article  Google Scholar 

  102. Yamasaki, K., Gozolchiani, A., Havlin, S.: Climate networks around the globe are significantly affected by el nino. Physical Review Letters 100(22), 228501 (2008)

    Article  Google Scholar 

  103. Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. ACM Computing Surveys (CSUR) 38(4), 13 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James H. Faghmous .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Faghmous, J.H., Kumar, V. (2014). Spatio-temporal Data Mining for Climate Data: Advances, Challenges, and Opportunities. In: Chu, W. (eds) Data Mining and Knowledge Discovery for Big Data. Studies in Big Data, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40837-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40837-3_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40836-6

  • Online ISBN: 978-3-642-40837-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics