Advertisement

Using Educational Domain Models for Automatic Item Generation Beyond Factual Knowledge Assessment

  • Muriel Foulonneau
  • Eric Ras
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8095)

Abstract

The Semantic Web offers many opportunities for reusing datasets and domain models in the field of education and assessment in particular. We have conducted research to generate test questions from Semantic resources. The reuse of semantic resources raises however challenges, since all data and models have not been conceived to be directly used for educational purposes. We have therefore analysed existing domain models created specifically for educational contexts to identify structures and relations of the model that can help deem the relevance of a particular domain model for automatic item generation. We present an initial set of conditions which can help identifying a relevant domain model to be used in an educational context. We also suggest a mechanism to relate them to levels of knowledge to be assessed in generated items.

Keywords

domain model Semantic Web assessment item model pattern 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bizer, C., Jentzsch, A., Cyganiak, R.: State of the LOD Cloud, Version 0.3, 09/19/2011 (2013), http://lod-cloud.net/state/ (retrieved April 8, 2013)
  2. 2.
    Foulonneau, M.: Generating Educational Assessment Items from Linked Open Data: the Case of DBpedia. In: García-Castro, R., Fensel, D., Antoniou, G. (eds.) ESWC 2011. LNCS, vol. 7117, pp. 16–27. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  3. 3.
    Papasalouros, A., Kotis, K., Kanaris, K.: Automatic generation of tests from domain and multimedia ontologies. Interactive Learning Environments 19, 5–23 (2011)CrossRefGoogle Scholar
  4. 4.
    Linnebank, F., Liem, J., Bredeweg, B.: Question generation and answering. DynaLearn, Deliverable D3.3, EC FP7 STREP project 231526 (2010)Google Scholar
  5. 5.
    Foulonneau, M., Grouès, G.: Common vs. expert knowledge: Making the Semantic Web an educational model. In: Linked Learning 2012 at WWW Conference, Lyon, France (2012)Google Scholar
  6. 6.
    Bratsas, C., Chrysou, D.E., Eftychiadou, A., Kontokostas, D., Bamidis, P., Antoniou, I.: Semantic Web Game Based Learning: An I18n approach with Greek DBpedia. In: Linked Learning 2012 at WWW Conference, Lyon, France (2012)Google Scholar
  7. 7.
    Álvaro Rey, G., Celino, I., Damova, M., Damljanovic, D., Li, N., Alexopoulos, P., Devedzic, V.: Semi-automatic generation of quizzes and learning artifacts from Linked Data. In: Linked Learning 2012 at WWW Conference, Lyon, France (2012)Google Scholar
  8. 8.
    Ghidini, C., Rospocher, M., Kump, B., Pammer, V., Faatz, A., Zinnen, A.: Integrated Modelling Methodology - Version 2.0. - Deliverable D1.6. Aposdle, EC FP7 IP project 027023. Fondazione Bruno Kessler, Trento (2009)Google Scholar
  9. 9.
    Pammer, V.: Automatic Support for Ontology Evaluation - Review of Entailed Statements and Assertional Effects for OWL Ontologies. Faculty of Computer Science. PhD. Graz University of Technology, Graz (2010)Google Scholar
  10. 10.
    Djaghloul, Y., Foulonneau, M., Jadoul, R.: From informal knowledge to High-Quality e-Assessment process: The OAT Semantic Approach. In: 15th International Conference on Interactive Collaborative Learning and 41st International Conference on Engineering Pedagogy, Villach, Austria (2012)Google Scholar
  11. 11.
    Ying, M.-H., Yang, H.-L.: Computer-Aided Generation of Item Banks Based on Ontology and Bloom’s Taxonomy. In: Li, F., Zhao, J., Shih, T.K., Lau, R., Li, Q., McLeod, D. (eds.) ICWL 2008. LNCS, vol. 5145, pp. 157–166. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    Shah, R.: Automatic Question Generation using Discourse Cues and Distractor Selection for Cloze Questions. Language Technology and Research Center (LTRC), thesis. International Institute of Information Technology, Hyderabad (2012)Google Scholar
  13. 13.
    Haladyna, T.M.: Automatic Item Generation - A historical perspective. In: Gierl, M.J., Haladyna, T.M. (eds.) Automatic Item Generation. Routledge, New York (2013)Google Scholar
  14. 14.
    Anderson, L.W., Krathwohl, D.R.: A Taxonomy for Learning, Teaching, and Assessing: a Revision of Bloom’s Taxonomy of Educational Objectives. Longman, New York (2001)Google Scholar
  15. 15.
    Kump, B.: Evaluating the Domain Model of Adaptive Work-integrated Learning Systems. PhD dissertation. Karl-Franzens Universität Graz, Graz (2010)Google Scholar
  16. 16.
    Borisova, P., Nakova, E., Uzunov, Y.: Central Laboratory of General Ecology - Basic topics and models - Deliverable D6.2.3. DynaLearn, EC FP7 STREP project 231526. Central Laboratory of General Ecology, Sofia (2010)Google Scholar
  17. 17.
    Noble, R.: University of Hull – Basic Topics and Models - Deliverable D6.2.2. DynaLearn, EC FP7 STREP project 231526. University of Hull, Yorkshire (2010)Google Scholar
  18. 18.
    Salles, P., Souza, A., De Sá, I.G., Leite, G.M.F., Tunholi, V.: Costa e Silva, P.A.: FUB - Advanced topics and models - Deliverable D6.4.1. DynaLearn, EC FP7 STREP project 231526 (2011)Google Scholar
  19. 19.
    Zitek, A., Poppe, M., Stelzhammer, M., Jung, A., Zacharias, M., Muhar, S.: University of Natural Resources and Life Sciences, Vienna (BOKU) - Basic Topics and Models - Deliverable D6.2.5.: DynaLearn, EC FP7 STREP project 231526 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Muriel Foulonneau
    • 1
  • Eric Ras
    • 1
  1. 1.Public Research Centre Henri TudorLuxembourgLuxembourg

Personalised recommendations