Advertisement

When One Textbook Is Not Enough: Linking Multiple Textbooks Using Probabilistic Topic Models

  • Julio Guerra
  • Sergey Sosnovsky
  • Peter Brusilovsky
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8095)

Abstract

The Web-revolution in publishing and reading is rapidly increasing the volume of online textbooks. Nowadays, for most of the subjects, a selection of online textbooks is available. Such an abundance leads to an interesting opportunity: if a student does not like how a primary textbook presents a particular topic s/he can always access its alternative (e.g. more detailed or advanced) presentation elsewhere. Modern e-learning environments could better support access to different versions of instructional material by generating intelligent links between the textbooks sections that present similar topics and concepts. This paper reports an attempt to investigate the problem of fine-grained intelligent linking of online textbooks based on the probabilistic topic modeling technology. Using collections of textbooks in two domains (Elementary Algebra and Information Retrieval), we have demonstrated that intelligent linking based on probabilistic topic models produces a much better modeling quality than traditional term-based approaches.

Keywords

Hypermedia Textbooks LDA Topic Model Document Linking 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bechhofer, S., Goble, C., Carr, L., Kampa, S., Hall, W., De Roure, D.: COHSE: Conceptual Open Hypermedia Service. In: Handschuh, S., Staab, S. (eds.) Annotation for the Semantic Web, pp. 193–211. IOS Press (2003)Google Scholar
  2. 2.
    Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet Allocation. Journal of Machine Learning Research 3, 993–1022 (2003)zbMATHGoogle Scholar
  3. 3.
    Blei, D.M., Lafferty, J.D.: Dynamic topic models. In: Proceedings of the 23rd International Conference on Machine Learning, Pittsburgh, PA, June 25-29, pp. 113–120 (2006)Google Scholar
  4. 4.
    Domingue, J., Dzbor, M., Motta, E.: Magpie: supporting browsing and navigation on the semantic web. In: Rich, C., Nunes, N.J. (eds.) Proceedings of 9th International Conference on Intelligent User Interfaces (IUI 2004), Funchal, Madeira, Portugal, pp. 191–197. ACM Press, New York (2004)Google Scholar
  5. 5.
    Fountain, A., Hall, W., Heath, I., Davis, H.: MICROCOSM: An open model for hypermedia with dynamic linking. In: Streitz, N., Rizk, A., André, J. (eds.) Hypertext: Concepts, Systems and Applications, pp. 298–311. Cambridge University Press (1992)Google Scholar
  6. 6.
    Jednoralski, D., Melis, E., Sosnovsky, S., Ullrich, C.: Gap detection in web-based adaptive educational systems. In: Luo, X., Spaniol, M., Wang, L., Li, Q., Nejdl, W., Zhang, W. (eds.) ICWL 2010. LNCS, vol. 6483, pp. 111–120. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Mayes, J.T., Kibby, M.R., Watson, H.: StrathTutor: The development and evaluation of a learning-by-browsing on the Macintosh. Computers and Education 12(1), 221–229 (1988)CrossRefGoogle Scholar
  8. 8.
    McCallum, A.: MALLET: A Machine Learning for Language Toolkit (2002), http://mallet.cs.umass.edu
  9. 9.
    Sosnovsky, S., Hsiao, I.-H., Brusilovsky, P.: Adaptation “in the Wild”: Ontology-Based Personalization of Open-Corpus Learning Material. In: Ravenscroft, A., Lindstaedt, S., Kloos, C.D., Hernández-Leo, D. (eds.) EC-TEL 2012. LNCS, vol. 7563, pp. 425–431. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  10. 10.
    Steyvers, M., Griffiths, T.: Probabilistic topic models. In: Landauer, T., McNamara, D.S., Dennis, S., Kintsch, W. (eds.) Handbook of Latent Semantic Analysis. Lawrence Erlbaum (2007)Google Scholar
  11. 11.
    Wallach, H.M.: Structured Topic Models for Language (Doctoral dissertation). University of Cambridge, UK (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Julio Guerra
    • 1
    • 2
  • Sergey Sosnovsky
    • 3
  • Peter Brusilovsky
    • 1
  1. 1.University of PittsburghPittsburghUSA
  2. 2.Universidad Austral de ChileValdiviaChile
  3. 3.CeLTechDFKISaarbrückenGermany

Personalised recommendations