Cognitive and Neural Aspects of Face Processing

  • Davide RivoltaEmail author
Part of the Cognitive Systems Monographs book series (COSMOS, volume 20)


Faces represent the stimuli we rely on the most for social interaction. They inform us about the identity, mood, gender, age, attractiveness, race and approachability of a person. This is remarkable if we think that all faces share the same composition of internal features (i.e., two eyes above the nose and a mouth) and 3D structure. Thus, faces are unique in terms of the richness of social signals they convey, and the reason why face perception has played a central role for social interaction in a wide range of species for millions of years. Given its importance, face processing has also become one of the most prominent areas of research in cognitive science of the last 50 years, and a large number of behavioural, neuropsychological and neuroimaging studies have significantly advanced our understanding of the developmental, cognitive and neural bases of face perception.


Face Recognition Face Processing Superior Temporal Sulcus Face Perception Holistic Processing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Allison, T., McCarthy, G., Nobre, A., Puce, A., & Belger, A. (1994). Human exstrastriate visual cortex and the perception of faces, words, numbers, and colors. Cerebral Cortex, 5, 544–554.CrossRefGoogle Scholar
  2. Allison, T., Puce, A., Spencer, D. D., & McCarthy, G. (1999). Electrophysiological studies of human face perception. I. Potentials generated in occipitotemporal cortex by face and non-face stimuli. Cerebral Cortex, 9, 415–430.CrossRefGoogle Scholar
  3. Bentin, S., McCarthy, G., Perez, E., Puce, A., & Allison, T. (1996). Electrophysiological studies of face perception in humans. Journal of Cognitive Neuroscience, 8, 551–565.CrossRefGoogle Scholar
  4. Bowles, D. C., McKone, E., Dawel, A., Duchaine, B., Palermo, R., Schmalzl, L., et al. (2009). Diagnosing prosopagnosia: Effects of aging, sex, and participant-stimulus ethnic match on the Cambridge Face Memory Test and Cambridge Face Perception Test. Cognitive Neuropsychology, 26(5), 423–455.CrossRefGoogle Scholar
  5. Bruce, V., & Young, A., (1986). Understanding face recognition. British Journal of Psychology, 77 (3), 305–327. Google Scholar
  6. Carey, S., Diamond, R., & Woods, B. (1980). Development of face recognition—a maturational component? Developmental Psychology, 16(4), 257–269.CrossRefGoogle Scholar
  7. Cohen, L. B., & Cashon, C. H. (2001). Do 7-month-old infants process independent features of facial configurations? Infant and Child Development, 10, 83–92.CrossRefGoogle Scholar
  8. Crouzet, S., Kirchner, H., & Thorpe, S. J. (2010). Fast saccades toward faces: face detection in just 100 ms. Journal of Vision, 10(4), 1–17.CrossRefGoogle Scholar
  9. Deffke, I., Sander, T., Heidenreich, J., Sommer, W., Curio, G., Trahms, L., et al. (2007). MEG/EEG sources of the 170-ms response to faces are co-localized in the fusiform gyrus. NeuroImage, 35, 1495–1501.CrossRefGoogle Scholar
  10. Diamond, R., & Carey, S. (1986). Why faces are and are not special: An effect of expertise. Journal of Experimental Psychology: General, 115(2), 107–117.CrossRefGoogle Scholar
  11. Duchowny, M. S. (1989). Surgery for intractable epilepsy: Issues and outcome. Pediatrics, 84, 886–894.Google Scholar
  12. Feingold, C. A. (1914). The influence of environment on identification of persons and things. Journal of Criminal Law and Police, 5, 39–51.Google Scholar
  13. Gauthier, I., Tarr, M. J., Moylan, J., Skudlarski, P., Gore, J. C., & Anderson, A. W. (2000). The fusiform “face area” is part of a network that processes faces at the individual level. Journal of Cognitive Neuroscience, 12, 495–504.CrossRefGoogle Scholar
  14. Gobbini, M. I., & Haxby, J. V. (2007). Neural systems for recognition of familiar faces. Neuropsycholgia, 45, 32–41.CrossRefGoogle Scholar
  15. Grill-Spector, K., & Kanwisher, N. (2005). As soon as you know it is there, you know what it is. Psychological Science, 16(2), 152–160.CrossRefGoogle Scholar
  16. Gross, C. G. (2008). Single neuron studies of inferior temporal cortex. Neuropsychologia, 46, 841–852.CrossRefGoogle Scholar
  17. Harris, A., & Nakayama, K. (2008). Rapid adaptation of the M170 response: Importance of face parts. Cerebral Cortex, 18, 467–476.CrossRefGoogle Scholar
  18. Haxby, J. V., Hoffman, E. A., & Gobbini, M. I. (2000). The distributed human neural system for face perception. Trends in Cognitive Sciences, 4(6), 223–233.CrossRefGoogle Scholar
  19. Haxby, J. V., Horwitz, B., Ungerleider, L. G., Maisog, J. M., Pietrini, P., & Grady, C. L. (1994). The functional organization of human extrastriate cortex: A PET-rCBF study of selective attention to faces and locations. Journal of Neuroscience, 14, 6336–6353.Google Scholar
  20. Hayden, A., Bhatt, R. S., Reed, A., Corbly, C. R., & Joseph, J. E. (2007). The development of expert face processing: Are infants sensitive to normal differences in second-order relational information? Journal of Experimental Child Psychology, 97, 85–98.CrossRefGoogle Scholar
  21. Itier, R. J., Alain, C., Sedore, K., & McIntosh, A. (2007). Early face processing specificity: It’s in the eyes! Journal of Cognitive Neuroscience, 19(11), 1815–1826.CrossRefGoogle Scholar
  22. Jeffreys, D. A. (1989). A face-responsive potential recorded from the human scalp. Experimental Brain Research, 78, 193–202.CrossRefGoogle Scholar
  23. Jonas, J., Descoins, M., Koessler, L., Colnat-Coulbois, S., Sauvee, M., Guye, M., et al. (2012). Focal electrical intracerebral stimulation of a face-sensitive area causes transient prosopagnosia. Neuroscience, 222(11), 1078–1091.Google Scholar
  24. Kanwisher, N., McDermott, J., & Chun, M. M. (1997). The fusiform face area: A module in human extrastriate cortex specialized for face perception. Journal of Neuroscience, 17, 4302–4311.Google Scholar
  25. Kriegeskorte, N., Formisano, E., Sorger, B., & Goebel, R. (2007). Individual faces elicit distinct response patterns in human anterior temporal cortex. Proceedings of the National Academy of Science USA, 104(51), 20600–20605.CrossRefGoogle Scholar
  26. Kuhl, P. K., Tsao, F.-M., & Liu, H.-M. (2003). Foreign-language experience in infancy: Effects of short-term exposure and social interaction on phonetic learning. Proceedings of the National Academy of Sciences (PNAS) USA, 100, 9096–9101.CrossRefGoogle Scholar
  27. Le Grand, R., Mondloch, C., Maurer, D., & Brent, H. (2004). Impairment in holistic face processing following early visual deprivation. Psychological Science, 15, 762–768.CrossRefGoogle Scholar
  28. Linkenkaer-Hansen, K., Palva, J. M., Sams, M., Hietanen, J. K., Aronen, H. J., & Ilmoniemi, R. J. (1998). Face-selective processing in human extrastriate cortex around 120 ms after stimulus onset revealed by magneto- and electroencephalography. Neuroscience Letters, 253, 147–150.CrossRefGoogle Scholar
  29. Liu, J., Harris, A., & Kanwisher, N. (2002). Stages of processing in face perception: An MEG study. Nature Neuroscience, 5(9), 910–916.CrossRefGoogle Scholar
  30. Liu, J., Harris, A., & Kanwisher, N. (2009). Perception of face parts and face configurations: An fMRI study. Journal of Cognitive Neuroscience, 22(1), 203–211.CrossRefGoogle Scholar
  31. Liu, J., Higuchi, M., Marantz, A., & Kanwisher, N. (2000). The selectivity of the occipitotemporal M170 for faces. Cognitive Neuroscience and Neuropsychology, 11(2), 337–341.Google Scholar
  32. McKone, E., Crookes, K., Jeffery, L., & Dilks, D. (2012). A critical review of the development of face recognition: Experience is less important than previously believed. Cognitive Neuropsychology, 29, 174–212.CrossRefGoogle Scholar
  33. McKone, E., Crookes, K., & Kanwisher, N. (2009). The cognitive and neural development of face recognition in humans. In M. S. Gazzaniga (Ed.), The cognitive neurosciences IV (pp. 467–482). Cambridge, MA: Bradford Books.Google Scholar
  34. McKone, E., & Yovel, G. (2009). Why does picture-plane inversion sometimes dissociate perception of features and spacing in faces, and sometimes not? Toward a new theory of holistic processing. Psychonomic Bulletin & Review 16, 778–797. Google Scholar
  35. McKone, E., Kanwisher, N., & Duchaine, B. (2006). Can generic expertise explain special processing for faces? Trends in Cognitive Sciences, 11(1), 8–15.CrossRefGoogle Scholar
  36. McKone, E., & Palermo, R. (2010). A strong role for nature in face recognition. Proceedings of the National Academy of Sciences (PNAS), US, 107(11), 4795–4796.Google Scholar
  37. Milner, A. D., & Goodale, M. A. (2006). The visual brain in action. New York: Oxford University Press.CrossRefGoogle Scholar
  38. Mondloch, C., Le Grand, R., & Maurer, D. (2002). Configural face processing develops more slowly than featural processing. Perception, 31, 553–566.CrossRefGoogle Scholar
  39. Narumoto, J., Okada, T., Sadato, N., Fukui, K., & Yonekura, Y. (2001). Attention to emotion modulates fMRI activity in human right superior temporal sulcus. Brain Research. Cognitive Brain Research, 12(2), 225–231.CrossRefGoogle Scholar
  40. Ostrovsky, Y., Andalman, A., & Sinha, P. (2006). Vision following extended congenital blindness. Psychological Science, 17(12), 1009–1014.CrossRefGoogle Scholar
  41. Palermo, R., & Rhodes, G. (2002). The influence of divided attention on holistic face perception. Cognition, 82, 225–257.CrossRefGoogle Scholar
  42. Parvizi, J., Jacques, C., Foster, B. L., Withoft, N., Rangarajan, V., Weiner, K. S., et al. (2012). Electrical stimulation of human fusiform face-selective regions distorts face perception. The Journal of Neuroscience, 32(43), 14915–14920.CrossRefGoogle Scholar
  43. Pascalis, O., de Haan, M., & Nelson, C. A. (2002). Is face processing species-specific during the first year of life? Science, 296(5571), 1321–1323.CrossRefGoogle Scholar
  44. Pascalis, O., deHaan, M., Nelson, C. A., & de Schonen, S. (1998). Long-term recognition memory for faces assessed by visual paired comparison in 3- and 6-month-old infants. Journal of Experimental Psychology. Learning, Memory, and Cognition, 24(1), 249–260.CrossRefGoogle Scholar
  45. Pitcher, D., Duchaine, B., Walsh, V., Yovel, G., & Kanwisher, N. (2011). The role of lateral occipital face and object areas in the face inversion effect. Neuropsychologia, 49(12), 3448–3453.CrossRefGoogle Scholar
  46. Pitcher, D., Walsh, V., Yovel, G., & Duchaine, B. (2007). TMS evidence for the involvement of the right occipital face area in early face processing. Current Biology, 17, 1568–1573.CrossRefGoogle Scholar
  47. Purcell, D. G., & Stewart, A. L. (1988). The face detection effect: Configuration enhances perception. Perception and Psychophysics, 43(4), 355–366.CrossRefGoogle Scholar
  48. Rivolta, D., Palermo, R., Schmalzl, L., & Williams, M. A. (2012). An early category-specific neural response for the perception of both places and faces. Cognitive Neuroscience, 3(1), 45–51.CrossRefGoogle Scholar
  49. Robbins, R., & McKone, E. (2007). No face-like processing for objects-of-expertise in three behavioural tasks. Cognition, 103, 331–336.CrossRefGoogle Scholar
  50. Rossion, B., Gauthier, I., Tarr, M. J., Despland, P., Bruyer, R., Linotte, S., et al. (2000). The N170 occipito-temporal component is delayed and enhanced to inverted faces but not to inverted objects: An electrophysiological account of face-specific processes in the human brain. NeuroReport, 11, 69–74.CrossRefGoogle Scholar
  51. Rotshtein, P., Henson, R. N. A., Treves, A., Driver, J., & Dolan, R. (2005). Morphing Marilyn into Maggie dissociates physical and identity face representations in the brain. Nature Neuroscience, 8(1), 107–113.CrossRefGoogle Scholar
  52. Scherf, K. S., Behrmann, M., Humphrey, K., & Luna, B. (2007). Visual category-selectivity for faces, places and objects emerges along different developmental trajectories. Developmental Science, 10(4), F15–F30.CrossRefGoogle Scholar
  53. Schiltz, C., & Rossion, B. (2006). Faces are represented holistically in the human occipito-temporal cortex. NeuroImage, 32, 1385–1394.CrossRefGoogle Scholar
  54. Schmalzl, L. (2007). Fractionating face processing in congenital prosopagnosia. Sydney, Australia: Macquarie University.Google Scholar
  55. Sengpiel, F. (2007). The critical period. Current Biology, 17, R742–R743.CrossRefGoogle Scholar
  56. Slater, A., Quinn, P. C., Hayes, R., & Brown, E. (2000). The role of facial orientation in newborn infants’ preference for attractive faces. Developmental Science, 3(2), 181–185.CrossRefGoogle Scholar
  57. Tanaka, J. W. (2001). The entry point of face recognition: Evidence for face expertise. Journal of Experimental Psychology: General, 130(3), 534–543.CrossRefGoogle Scholar
  58. Tanaka, J. W., & Farah, M. J. (1993). Parts and wholes in face recognition. Quarterly Journal of Experimental Psychology A, 46(2), 225–245.Google Scholar
  59. Turati, C., Bulf, H., & Simion, F. (2008). Newborns’ face recognition over changes in viewpoint. Cognition, 106, 1300–1321.CrossRefGoogle Scholar
  60. Wilmer, J. B., Germine, L., Chabris, C. F., Chatterjee, G., Williams, M., Loken, E., et al. (2010). Human face recognition ability is specific and highly heritable. Proceedings of the National Academy of Science.. doi: 10.1073/pnas.1000567107.Google Scholar
  61. Yin, R. K. (1969). Looking at upside-down faces. Journal of Experimental Psychology, 81, 141–145.CrossRefGoogle Scholar
  62. Young, A. W., Hellawell, D., & Hay, D. C. (1987). Configurational information in face perception. Perception, 16, 747–759.CrossRefGoogle Scholar
  63. Yovel, G., & Kanwisher, N. (2005). The neural basis of the behavioral face-inversion effect. Current Biology, 15, 2256–2262.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of NeurophysiologyMax-Planck Institute for Brain ResearchFrankfurt am MainGermany

Personalised recommendations