Advertisement

L2RLab: Integrated Experimenter Environment for Learning to Rank

  • Óscar J. Alejo
  • Juan M. Fernández-Luna
  • Juan F. Huete
  • Eleazar Moreno-Cerrud
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8132)

Abstract

L2RLab is a development environment that lets us to integrate all the stages to develop, evaluate, compare and analyze the performance of new learning-to-rank models. It contains tools for individual and multiple pre-processed of the data collections, it also lets us to study the influence of the features in the ranking, the format conversion (e.g., Weka’s .ARFF) and visualization. This software facilitates the comparison between two or more methods taking as parameters the performance achieved in the ranking, also includes functionalities for the statistical analysis on the query-level precision of the algorithm proposed regarding to those referenced in the literature. The study of the learning curves’ behavior of the different methods is another feature of the tool. L2RLab is programmed in java and is designed as a tool oriented to the extensibility, therefore, the addition of new functionalities is an easy task. L2RLab has an easy-to-use interface that avoids the reprogramming of the applications for our experiments. Basically, L2RLab is structured by two main modules: the visual application and a framework that facilitates the inclusion of the new algorithms and the performance measures developed by the researcher.

Keywords

Information Retrieval Learning to Rank Experimentation Tool Data analysis tool 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Joachims, T.: A support vector method for multivariate performance measures. In: ICML 22, pp. 377–384 (2005)Google Scholar
  2. 2.
    Valizadegan, H., Jin, R., Zhang, R., Mao, J.: Learning to Rank by Optimizing NDCG Measure. In: Proceedings of NIPS 23, pp. 1883–1891 (2009)Google Scholar
  3. 3.
    Wu, J., Yang, Z., Lin, Y., Lin, H., Ye, Z., Xu, K.: Learning to Rank Using Query-Level Regression. In: SIGIR 2011: Proceedings of the 34th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Beijing, China, pp. 1091–1092 (2011)Google Scholar
  4. 4.
    Xu, J., Li, H.: Adarank: a boosting algorithm for information retrieval. In: SIGIR 2007: Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Amsterdam, Netherlands, pp. 391–398 (2007)Google Scholar
  5. 5.
    Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques, 2nd edn., p. 560. Morgan Kaufmann Publishers, San Francisco (2005)Google Scholar
  6. 6.
    Fayad, M.E., Schmidt, D.C., Johnson, R.E.: Building application frameworks: Object oriented foundations of framework design. Application Frameworks, ch., 1st edn., p. 638 (1999)Google Scholar
  7. 7.
    Liu, T.-Y., Xu, J., Qin, T., Xiong, W., Li, H.: Letor: Benchmark dataset for research on learning to rank for information retrieval. In: Proceedings of SIGIR 2007 Workshop on Learning to Rank for Information Retrieval (2007)Google Scholar
  8. 8.
    Järvelin, K., Kekäläinen, J.: Cumulated gain-based evaluation of ir techniques. ACM Transactions on Information Systems 20(4), 422–446 (2002)CrossRefGoogle Scholar
  9. 9.
    Cárdenas, J.: Análisis Univariado. Capítulo # 6.- Análisis de varianza multifactorial. In: C.-A.d.v.m.D.J.R.C.P.F.d.E (eds.) UCLV, Facultad de Economía, UCLV (2003)Google Scholar
  10. 10.
    Friedman, M.: A comparison of alternative tests of significance for the problem of m rankings. Annals of Mathematical Statistics 11, 86–92 (1940)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Nemenyi, P.B.: Distribution-free multiple comparisons. PhD thesis, Princeton University (1963)Google Scholar
  12. 12.
    Alejo, O.J., Fernández, J.M., Huete, J.F.: RankPSO: a new L2R algorithm based on Particle Swarm Optimization. Waitin for being published in Journal of Multiple-Valued Logic and Soft Computing (JMVLSC) (2013)Google Scholar
  13. 13.
    Clerc, M., Kennedy, J.: The particle swarm - explosion, stability, and convergence in a multidimensional complex space. IEEE Transactions Evolutionary Computation 6(1), 58–73 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Óscar J. Alejo
    • 1
  • Juan M. Fernández-Luna
    • 2
  • Juan F. Huete
    • 2
  • Eleazar Moreno-Cerrud
    • 1
  1. 1.Informatic FacultyUniversity of CienfuegosCienfuegosCuba
  2. 2.Departamento de Ciencias de la Computación e I.A., E.T.S.I. Informática y de Telecomunicación. CITIC-UGRUniversidad de GranadaGranadaSpain

Personalised recommendations