Semantic-Based Recommendation of Nutrition Diets for the Elderly from Agroalimentary Thesauri

  • Vanesa Espín
  • María V. Hurtado
  • Manuel Noguera
  • Kawtar Benghazi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8132)


The wealth of information on nutrition and healthy diets along the web, as health web magazines or forums, often leads to confuse users in several ways. Reliability and completeness of information, as well as extracting only the relevant one becomes a critical issue, especially for certain groups of people such as the elderly. Likewise, heterogeneity of information representation and without a clear semantics hinders knowledge sharing and enrichment. In this paper, it is introduced a method to compute the semantic similarity between foods used in NutElCare, an ontology-based recommender system capable of collecting and representing relevant nutritional information from expert sources in order to providing adequate nutrition tips for the elderly. The knowledge base of NutElCare is an OWL ontology built from AGROVOC FAO thesaurus.


Recommender systems semantic web ontology-based representation semantic similarity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aberg, J.: Dealing with Malnutrition: A Meal Planning System for Elderly. In: AAAI Spring Symposium: Argumentation for Consumers of Healthcare, pp. 1–7 (2006)Google Scholar
  2. 2.
    OWL API, Java OWL API reference implementation,
  3. 3.
    Benghazi, K., Hurtado, M.V., Hornos, M.J., Rodríguez, M.L., Rodríguez-Domínguez, C., Pelegrina, A.B., Rodríguez-Fórtiz, M.J.: Enabling correct design and formal analysis of Ambient Assisted Living systems. Journal of Systems and Software 85(3), 498–510 (2012)CrossRefGoogle Scholar
  4. 4.
    Bermudez, M., Noguera, M., Hurtado-Torres, N., Hurtado, M.V., Garrido, J.L.: Analyzing a firm’s international portfolio of technological knowledge: A declarative ontology-based OWL approach for patent documents. Advanced Engineering Informatics (2013)Google Scholar
  5. 5.
    Blanco-Fernández, Y., Pazos-Arias, J.J., Gil-Solla, A., Ramos-Cabrer, M., López-Nores, M., García-Duque, J., Fernández-Vilas, A., Díaz-Redondo, R.P.: Exploiting synergies between semantic reasoning and personalization strategies in intelligent recommender systems: A case study. Journal of Systems and Software 81(12), 2371–2385 (2008)CrossRefGoogle Scholar
  6. 6.
    Cobos, C., Rodriguez, O., Rivera, J., Betancourt, J., Mendoza, M., León, E., Herrera-Viedma, E.: A hybrid system of pedagogical pattern recommendations based on singular value decomposition and variable data attributes. Information Processing & Management 49(3), 607–625 (2013)CrossRefGoogle Scholar
  7. 7.
    FAO: Agrovoc linked open data,
  8. 8.
    Farsani, H.K., Nematbakhsh, M.: A semantic recommendation procedure for electronic product catalog 3, 86–91 (2006)Google Scholar
  9. 9.
    Freyne, J., Berkovsky, S.: Intelligent food planning: personalized recipe recommendation. In: Proceedings of the 15th International Conference on Intelligent User Interfaces, IUI 2010, pp. 321–324. ACM (2010)Google Scholar
  10. 10.
    Garrido, J.L., Hurtado, M.V., Noguera, M., Zurita, J.M.: Using a CBR approach based on ontologies for recommendation and reuse of knowledge sharing in decision making. In: Eighth International Conference on Hybrid Intelligent Systems, HIS 2008, pp. 837–842. IEEE (2008)Google Scholar
  11. 11.
    Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M.: SWRL: A Semantic Web Rule Language Combining OWL and RuleML,
  12. 12.
    Loizou, A., Dasmahapatra, S.: Recommender systems for the semantic web (2006)Google Scholar
  13. 13.
    Noguera, M., Hurtado, M.V., Rodríguez, M.L., Chung, L., Garrido, J.L.: Ontology-driven analysis of uml-based collaborative processes using owl-dl and cpn. Science of Computer Programming 75(8), 726–760 (2010)zbMATHCrossRefGoogle Scholar
  14. 14.
    Peis, E., del Castillo, J.M., Delgado-López, J.: Semantic recommender systems. analysis of the state of the topic. Hipertext. Net 6, 1–5 (2008)Google Scholar
  15. 15.
    PIPS: Personalised information platform for health and life services,
  16. 16.
    PROTÉGÉ: Protégé ontology editor,
  17. 17.
    SENPE, SEGG: Valoración nutricional en el anciano. Documento de Consenso. Ed., Galenitas-Nigra Trea (2007)Google Scholar
  18. 18.
    Serrano-Guerrero, J., Herrera-Viedma, E., Olivas, J.A., Cerezo, A., Romero, F.P.: A google wave-based fuzzy recommender system to disseminate information in university digital libraries 2.0. Inf. Sci. 181(9), 1503–1516 (2011)CrossRefGoogle Scholar
  19. 19.
    Snae, C., Bruecker, M.: FOODS: A food-oriented ontology-driven system, pp. 168–176. IEEE (2008)Google Scholar
  20. 20.
    Tufts University, S.o.N.S.: Keep fit for life: meeting the nutritional needs of older persons. World Health Organization (2002)Google Scholar
  21. 21.
    Van Pinxteren, Y., Geleijnse, G., Kamsteeg, P.: Deriving a recipe similarity measure for recommending healthful meals. In: Proceedings of the 16th International Conference on Intelligent user Interfaces, IUI 2011, pp. 105–114. ACM, New York (2011)Google Scholar
  22. 22.
    W3C: OWL web ontology language overview,
  23. 23.
    Wang, R.Q., Kong, F.S.: Semantic-enhanced personalized Recommender System. In: 2007 International Conference on Machine Learning and Cybernetics, vol. 7, pp. 4069–4074. IEEE (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Vanesa Espín
    • 1
  • María V. Hurtado
    • 1
  • Manuel Noguera
    • 1
  • Kawtar Benghazi
    • 1
  1. 1.Departamento de Lenguajes y Sistemas InformáticosUniversity of GranadaGranadaSpain

Personalised recommendations