M2LFGP: Mining Gradual Patterns over Fuzzy Multiple Levels

  • Yogi S. Aryadinata
  • Arnaud Castelltort
  • Anne Laurent
  • Michel Sala
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8132)


Data are often described at several levels of granularity. For instance, data concerning fruits that are purchased can be categorized regarding some criteria (such as size, weight, color, etc.). When dealing with data from the real world, such categories can hardly be defined in a crisp manner. For instance, some fruits may belong both to the small and medium-sized fruits. Data mining methods have been proposed to deal with such data, in order to take benefit from the several levels when extracting relevant patterns. The challenge is to discover patterns that are not too general (as they would not contain relevant novel information) while remaining typical (as detailed data do not embed general and representative information). In this paper, we focus on the extraction of gradual patterns in the context of hierarchical data. Gradual patterns describe covariation of attributes such as the bigger, the more expensive. As our proposal increases the number of combinations to be considered since all levels must be explored, we propose to implement the parallel computation in order to decrease the execution time.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Laurent, A., Aryadinata, Y., Sala, M.: M2LGP: Mining multiple level gradual patterns. In: Proc. of ICKDDM 2013: International Conference on Knowledge Discovery and Data Mining (2013)Google Scholar
  2. 2.
    Di-Jorio, L., Laurent, A., Teisseire, M.: Mining frequent gradual itemsets from large databases. In: Adams, N.M., Robardet, C., Siebes, A., Boulicaut, J.-F. (eds.) IDA 2009. LNCS, vol. 5772, pp. 297–308. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Do, T.D.T., Laurent, A., Termier, A.: PGLCM: Efficient parallel mining of closed frequent gradual itemsets. In: Proc. of ICDM 2010, The 10th IEEE International Conference on Data Mining, pp. 138–147 (2010)Google Scholar
  4. 4.
    Laurent, A., Negrevergne, B., Sicard, N., Termier, A.: PGP-mc: Towards a multicore parallel approach for mining gradual patterns. In: Kitagawa, H., Ishikawa, Y., Li, Q., Watanabe, C. (eds.) DASFAA 2010. LNCS, vol. 5981, pp. 78–84. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Hüllermeier, E.: Association rules for expressing gradual dependencies. In: Elomaa, T., Mannila, H., Toivonen, H. (eds.) PKDD 2002. LNCS (LNAI), vol. 2431, pp. 200–211. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  6. 6.
    Berzal, F., Cubero, J.C., Sanchez, D., Vila, M.A., Serrano, J.M.: An alternative approach to discover gradual dependencies. Int. Journal of Uncertainty, Fuzziness and Knowledge-Based Systems (IJUFKS) 15(5), 559–570 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Laurent, A., Lesot, M.-J., Rifqi, M.: GRAANK: Exploiting rank correlations for extracting gradual itemsets. In: Andreasen, T., Yager, R.R., Bulskov, H., Christiansen, H., Larsen, H.L. (eds.) FQAS 2009. LNCS, vol. 5822, pp. 382–393. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Bouchon-Meunier, B., Laurent, A., Lesot, M.J., Rifqi, M.: Strengthening fuzzy gradual rules through ”all the more” clauses. In: FUZZ-IEEE (2010)Google Scholar
  9. 9.
    Ayouni, S., Yahia, S.B., Laurent, A., Poncelet, P.: Fuzzy gradual patterns: What fuzzy modality for what result? In: Proc. of the Second International Conference of Soft Computing and Pattern Recognition (SoCPaR), pp. 224–230. IEEE (2010)Google Scholar
  10. 10.
    Quintero, M., Laurent, A., Poncelet, P.: Fuzzy orderings for fuzzy gradual patterns. In: Christiansen, H., De Tré, G., Yazici, A., Zadrozny, S., Andreasen, T., Larsen, H.L. (eds.) FQAS 2011. LNCS, vol. 7022, pp. 330–341. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  11. 11.
    Han, J., Fu, Y.: Mining multiple-level association rules in large databases. IEEE Trans. Knowl. Data Engin. 11(5), 798–804 (1999)CrossRefGoogle Scholar
  12. 12.
    Plantevit, M., Laurent, A., Laurent, D., Teisseire, M., Choong, Y.W.: Mining multidimensional and multilevel sequential patterns. ACM Transactions on Knowledge Discovery from Data (TKDD) 4(1) (2010)Google Scholar
  13. 13.
    Buckley, J.J., Feuring, T., Hayashi, Y.: Fuzzy hierarchical analysis revisited. European Journal of Operational Research 129(1), 48–64 (2001)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Yogi S. Aryadinata
    • 1
  • Arnaud Castelltort
    • 1
  • Anne Laurent
    • 1
  • Michel Sala
    • 1
  1. 1.LIRMM - CNRS UMR 5506University Montpellier 2Montpellier Cedex 5France

Personalised recommendations