Finding Similar Objects in Relational Databases — An Association-Based Fuzzy Approach

  • Olivier Pivert
  • Grégory Smits
  • Hélène Jaudoin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8132)


This paper deals with the issue of extending the scope of a user query in order to retrieve objects which are similar to its “strict answers”. The approach proposed exploits associations between database items, corresponding, e.g., to the presence of foreign keys in the database schema. Fuzzy concepts such as typicality, similarity and linguistic quantifiers are at the heart of the approach and make it possible to obtain a ranked list of similar answers.


Recommender System Target Object Relational Database User Query Recommendation Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agrawal, S., Chaudhuri, S., Das, G.: DBXplorer: A system for keyword-based search over relational databases. In: Proc. of ICDE 2002, pp. 5–16 (2002)Google Scholar
  2. 2.
    Andreasen, T., Bulskov, H.: Query expansion by taxonomy. In: Galindo, J. (ed.) Handbook of Research on Fuzzy Information Processing in Databases, pp. 325–349. Information Science Reference, Hershey (2008)CrossRefGoogle Scholar
  3. 3.
    Bhalotia, G., Hulgeri, A., Nakhe, C., Chakrabarti, S., Sudarshan, S.: Keyword searching and browsing in databases using BANKS. In: Proc. of ICDE 2002, pp. 431–440 (2002)Google Scholar
  4. 4.
    Bosc, P., Pivert, O.: On the comparison of imprecise values in fuzzy databases. In: Proc. of the 6th IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 1997), Barcelona, Spain, pp. 707–712 (1997)Google Scholar
  5. 5.
    Bouchon-Meunier, B., Coletti, G., Lesot, M.-J., Rifqi, M.: Towards a conscious choice of a fuzzy similarity measure: A qualitative point of view. In: Hüllermeier, E., Kruse, R., Hoffmann, F. (eds.) IPMU 2010. LNCS, vol. 6178, pp. 1–10. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  6. 6.
    Chakrabarti, K., Ganti, V., Han, J., Xin, D.: Ranking objects based on relationships. In: Proc. of SIGMOD 2006, pp. 371–382 (2006)Google Scholar
  7. 7.
    Dubois, D., Prade, H.: Weighted minimum and maximum operations in fuzzy set theory. Information Sciences 39, 205–210 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Dubois, D., Prade, H.: On data summarization with fuzzy sets. In: Proc. of IFSA 1993, pp. 465–468 (1993)Google Scholar
  9. 9.
    Gaasterland, T.: Relaxation as a platform for cooperative answering. Journal of Intelligent Information Systems 1(3-4), 296–321 (1992)CrossRefGoogle Scholar
  10. 10.
    Hristidis, V., Papakonstantinou, Y.: DISCOVER: Keyword search in relational databases. In: Proc. of VLDB 2002, pp. 670–681 (2002)Google Scholar
  11. 11.
    Koutrika, G., Bercovitz, B., Garcia-Molina, H.: Flexrecs: expressing and combining flexible recommendations. In: Proc. of SIGMOD 2009, pp. 745–758 (2009)Google Scholar
  12. 12.
    Pappis, C., Karacapilidis, N.: A comparative assessment of measures of similarity of fuzzy values. Fuzzy Sets and Systems (1993)Google Scholar
  13. 13.
    Stefanidis, K., Drosou, M., Pitoura, E.: You may also like” results in relational databases. In: Proc. of PersDB 2009 (2009)Google Scholar
  14. 14.
    Sun, Y., Han, J., Yan, X., Yu, P.S., Wu, T.: Pathsim: Meta path-based top-k similarity search in heterogeneous information networks. PVLDB 4(11), 992–1003 (2011)Google Scholar
  15. 15.
    Yager, R.: General multiple-objective decision functions and linguistically quantified statements. International Journal of Man-Machine Studies 21(5), 389–400 (1984)zbMATHCrossRefGoogle Scholar
  16. 16.
    Yager, R.: Interpreting linguistically quantified propositions. International Journal of Intelligent Systems 9(6), 541–569 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Zadeh, L.: A computational approach to fuzzy quantifiers in natural languages. Computing and Mathematics with Applications 9, 149–183 (1983)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Zadeh, L.: A computational theory of dispositions. International Journal of Intelligent Systems 2, 39–63 (1987)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Olivier Pivert
    • 1
  • Grégory Smits
    • 2
  • Hélène Jaudoin
    • 1
  1. 1.Irisa – Enssat, University of Rennes 1, Technopole AnticipaLannion CedexFrance
  2. 2.Irisa – Enssat, IUT Lannion, Technopole AnticipaLannion CedexFrance

Personalised recommendations