A Possibilistic Logic Approach to Conditional Preference Queries

  • Didier Dubois
  • Henri Prade
  • Fayçal Touazi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8132)


The paper presents a new approach to deal with database preference queries, where preferences are represented in the style of possibilistic logic, using symbolic weights. The symbolic weights may be processed without the need of a numerical assignment of priority. Still, it is possible to introduce a partial ordering among the symbolic weights if necessary. On this basis, four methods that have an increasing discriminating power for ranking the answers to conjunctive queries, are proposed. The approach is compared to different lines of research in preference queries including skyline-based methods and fuzzy set-based queries. With the four proposed ranking methods the first group of best answers is made of non dominated items. The purely qualitative nature of the approach avoids the commensurability requirement of elementary evaluations underlying the fuzzy logic methods.


Possibility Distribution Conjunctive Query Possibilistic Logic Priority Weight Conditional Preference 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bosc, P., Pivert, O.: Some approaches for relational databases flexible querying. Journal of Intelligent Information Systems 1, 323–354 (1992)CrossRefGoogle Scholar
  2. 2.
    Fagin, R., Lotem, A., Naor, M.: Optimal aggregation algorithms for middleware. In: Proc. 20th ACM SIGACT-SIGMOD-SIGART Symp. on Principles of Database Syst. (2001)Google Scholar
  3. 3.
    Börzsönyi, S., Kossmann, D., Stocker, K.: The skyline operator. In: Proc. 17th IEEE International Conference on Data Engineering, pp. 421–430 (2001)Google Scholar
  4. 4.
    Chomicki, J.: Preference formulas in relational queries. ACM Transactions on Database Systems 28, 1–40 (2003)CrossRefGoogle Scholar
  5. 5.
    Kiessling, W.: Foundations of preferences in database systems. In: Proc. of the 28th International Conference on Very Large Data Bases (VLDB 2002), pp. 311–322 (2002)Google Scholar
  6. 6.
    Boutilier, C., Brafman, R.I., Domshlak, C., Hoos, H., Poole, D.: CP-nets: A tool for representing and reasoning with conditional ceteris paribus preference statements. J. Artificial Intelligence Research (JAIR) 21, 135–191 (2004)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Brafman, R.I., Domshlak, C.: Database preference queries revisited. Technical Report TR2004-1934, Cornell University, Computing and Information Science (2004)Google Scholar
  8. 8.
    HadjAli, A., Kaci, S., Prade, H.: Database preference queries - A possibilistic logic approach with symbolic priorities. Ann. Math. Artif. Intell. 63, 357–383 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Bosc, P., Pivert, O., Prade, H.: A possibilistic logic view of preference queries to an uncertain database. In: Proc. IEEE Inter. Conf. on Fuzzy Systems (FUZZ-IEEE 2010), Barcelona, Spain, July 18-23, pp. 1–6 (2010)Google Scholar
  10. 10.
    Hadjali, A., Pivert, O., Prade, H.: On different types of fuzzy skylines. In: Kryszkiewicz, M., Rybinski, H., Skowron, A., Raś, Z.W. (eds.) ISMIS 2011. LNCS, vol. 6804, pp. 581–591. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  11. 11.
    Wilson, N.: Computational techniques for a simple theory of conditional preferences. Artif. Intell. 175, 1053–1091 (2011)zbMATHCrossRefGoogle Scholar
  12. 12.
    Dubois, D., Prade, H.: Possibilistic logic: a retrospective and prospective view. Fuzzy Sets and Systems 144, 3–23 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    de Calmès, M., Dubois, D., Hüllermeier, E., Prade, H., Sedes, F.: Flexibility and fuzzy case-based evaluation in querying: An illustration in an experimental setting. Int. Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 11, 43–66 (2003)zbMATHCrossRefGoogle Scholar
  14. 14.
    Benferhat, S., Dubois, D., Prade, H.: Towards a possibilistic logic handling of preferences. Applied Intelligence 14, 303–317 (2001)zbMATHCrossRefGoogle Scholar
  15. 15.
    Dubois, D., Kaci, S., Prade, H.: Representing preferences in the possibilistic setting. In: Bosi, G., Brafman, R.I., Chomicki, J., Kies̈ling, W. (eds.) Preferences: Specification, Inference, Applications. Number 04271 in Dagstuhl Seminar Proceedings (2006)Google Scholar
  16. 16.
    Benferhat, S., Dubois, D., Kaci, S., Prade, H.: Bridging logical, comparative, and graphical possibilistic representation frameworks. In: Benferhat, S., Besnard, P. (eds.) ECSQARU 2001. LNCS (LNAI), vol. 2143, pp. 422–431. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  17. 17.
    Benferhat, S., Dubois, D., Kaci, S., Prade, H.: Graphical readings of possibilisitc logic bases. In: 17th Conf. Uncertainty in AI (UAI 2001), Seattle, August 2-5, pp. 24–31 (2001)Google Scholar
  18. 18.
    Benferhat, S., Dubois, D., Garcia, L., Prade, H.: On the transformation between possibilistic logic bases and possibilistic causal networks. Inter. J. of Approx. Reas. 29, 135–173 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Dubois, D., Prade, H., Touazi, F.: Conditional preference nets and possibilistic logic. In: van der Gaag, L.C. (ed.) ECSQARU 2013. LNCS, vol. 7958, pp. 181–193. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  20. 20.
    Dubois, D., Prade, H., Touazi, F.: Handling partially ordered preferences in possibilistic logic. In: ECAI 2012 Workshop on Weighted Logics for Artificial Intelligence, pp. 91–98 (2012)Google Scholar
  21. 21.
    Benferhat, S., Yahi, S.: Complexity and cautiousness results for reasoning from partially preordered belief bases. In: Sossai, C., Chemello, G. (eds.) ECSQARU 2009. LNCS, vol. 5590, pp. 817–828. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  22. 22.
    Yahi-Mechouche, S.: Raisonnement en présence d’incohérence: de la compilation de bases de croyances stratifiées à l’inférence à partir de bases de croyances partiellement préordonnées. Université d’Artois Faculté des Sciences Jean Perrin, Lens (2009)Google Scholar
  23. 23.
    Stefanidis, K., Koutrika, G., Pitoura, E.: A survey on representation, composition and application of preferences in database systems. ACM Trans. Database Syst. 36, 19:1–19:45 (2011)Google Scholar
  24. 24.
    Lacroix, M., Lavency, P.: Preferences: Putting more knowledge into queries. In: Proc. of the 13th Inter. Conference on Very Large Databases (VLDB 1987), pp. 217–225 (1987)Google Scholar
  25. 25.
    Bosc, P., Pivert, O.: Fuzzy Preference Queries to Relational Databases. Imperial College Press (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Didier Dubois
    • 1
  • Henri Prade
    • 1
  • Fayçal Touazi
    • 1
  1. 1.IRITCNRS & University of ToulouseFrance

Personalised recommendations