Skip to main content

Image Classification Based on 2D Feature Motifs

  • Conference paper
Flexible Query Answering Systems (FQAS 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8132))

Included in the following conference series:

Abstract

The classification of raw data often involves the problem of selecting the appropriate set of features to represent the input data. In general, various features can be extracted from the input dataset, but only some of them are actually relevant for the classification process. Since relevant features are often unknown in real-world problems, many candidate features are usually introduced. This degrades both the speed and the predictive accuracy of the classifier due to the presence of redundancy in the candidate feature set.

In this paper, we study the capability of a special class of motifs previously introduced in the literature, i.e. 2D irredundant motifs, when they are exploited as features for image classification. In particular, such a class of motifs showed to be powerful in capturing the relevant information of digital images, also achieving good performances for image compression. We embed such 2D feature motifs in a bag-of-words model, and then exploit K-nearest neighbour for the classification step. Preliminary results obtained on both a benchmark image dataset and a video frames dataset are promising.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amelio, A., Apostolico, A., Rombo, S.E.: Image compression by 2D motif basis. In: Data Compression Conference (DCC 2011), pp. 153–162 (2011)

    Google Scholar 

  2. Apostolico, A., Parida, L.: Incremental paradigms of motif discovery. J. of Comp. Biol. 11(1), 15–25 (2004)

    Article  Google Scholar 

  3. Apostolico, A., Parida, L., Rombo, S.E.: Motif patterns in 2D. Theoretical Computer Science 390(1), 40–55 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-Up Robust Features (SURF). Computer Vision and Image Understanding 110(3), 346–359 (2008)

    Article  Google Scholar 

  5. Berg, A.C., Berg, T.L., Malik, J.: Shape matching and object recognition using low distortion correspondences. In: Proc. of IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), vol. 1, pp. 26–33 (2005)

    Google Scholar 

  6. Bosch, A., Muñoz, X., Martí, R.: Review: Which is the best way to organize/classify images by content? Image Vision Comput. 25(6), 778–791 (2007)

    Article  Google Scholar 

  7. Bosch, A., Zisserman, A., Muñoz, X.: Scene classification using a hybrid generative/discriminative approach. IEEE Trans. Pattern Anal. Mach. Intell. 30(4), 712–727 (2008)

    Article  Google Scholar 

  8. Dash, M., Liu, H.: Feature selection for classification. Intelligent Data Analysis 1, 131–156 (1997)

    Article  Google Scholar 

  9. Keogh, E.J., et al.: Supporting exact indexing of arbitrarily rotated shapes and periodic time series under euclidean and warping distance measures. VLDB J. 18(3), 611–630 (2009)

    Article  Google Scholar 

  10. Fredriksson, K., Mäkinen, V., Navarro, G.: Rotation and lighting invariant template matching. Information and Computation 205(7), 1096–1113 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Grossi, R., Pisanti, N., Crochemore, M., Sagot, M.-F.: Bases of motifs for generating repeated patterns with wild cards. IEEE/ACM Trans. Comp. Biol. Bioinf. 2(3), 159–177 (2000)

    Google Scholar 

  12. Hofmann, T.: Unsupervised learning by probabilistic latent semantic analysis. Machine Learning 42(1-2), 177–196 (2001)

    Article  MATH  Google Scholar 

  13. Hundt, C., Liskiewicz, M., Nevries, R.: A combinatorial geometrical approach to two-dimensional robust pattern matching with scaling and rotation. Theoretical Computer Science 410(51), 5317–5333 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. John, G.H., Kohavi, R., Pfleger, K.: Irrelevant features and the subset selection problem. In: Machine Learning: Proceedings of the Eleventh International, pp. 121–129 (1994)

    Google Scholar 

  15. Kadir, T., Brady, M.: Saliency, scale and image description. Int. J. Comput. Vision 45(2), 83–105 (2001)

    Article  MATH  Google Scholar 

  16. Lowe, D.G.: Object recognition from local scale-invariant features. In: Proc. of the 7th IEEE International Conference on Computer Vision, vol. 2, pp. 1150–1157 (1999)

    Google Scholar 

  17. Lowe, D.G.: Local feature view clustering for 3D object recognition. In: Proc. of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2001), pp. 682–688 (2001)

    Google Scholar 

  18. Lu, D., Weng, Q.: A survey of image classification methods and techniques for improving classification performance. International Journal of Remote Sensing 28(5), 823–870 (2007)

    Article  Google Scholar 

  19. Marée, R., Geurts, P., Piater, J.H., Wehenkel, L.: Biomedical image classification with random subwindows and decision trees. In: Liu, Y., Jiang, T.-Z., Zhang, C. (eds.) CVBIA 2005. LNCS, vol. 3765, pp. 220–229. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  20. Marée, R., Geurts, P., Piater, J., Wehenkel, L.: Random subwindows for robust image classification. In: Proc. of International Conference on Computer Vision and Pattern Recognition (CVPR), pp. 34–40 (2005)

    Google Scholar 

  21. Matas, J., Obdrzálek, S.: Object recognition methods based on transformation covariant features. In: 12th European Signal Processing Conference (2004)

    Google Scholar 

  22. Nanni, L., Lumini, A., Brahnam, S.: Survey on LBP based texture descriptors for image classification. Expert Syst. Appl. 39(3), 3634–3641 (2012)

    Article  Google Scholar 

  23. Parida, L., Pizzi, C., Rombo, S.E.: Characterization and extraction of irredundant tandem motifs. In: Calderón-Benavides, L., González-Caro, C., Chávez, E., Ziviani, N. (eds.) SPIRE 2012. LNCS, vol. 7608, pp. 385–397. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  24. Philbin, J., Chum, O., Isard, M., Sivic, J., Zisserman, A.: Object retrieval with large vocabularies and fast spatial matching. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2007), pp. 1–8 (2007)

    Google Scholar 

  25. Rombo, S.E.: Optimal extraction of motif patterns in 2D. Information Processing Letters 109(17), 1015–1020 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Rombo, S.E.: Extracting string motif bases for quorum higher than two. Theor. Comput. Sci. 460, 94–103 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Rombo, S.E., Terracina, G.: Discovering representative models in large time series databases. In: Christiansen, H., Hacid, M.-S., Andreasen, T., Larsen, H.L. (eds.) FQAS 2004. LNCS (LNAI), vol. 3055, pp. 84–97. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  28. Shao, H., Svoboda, T., Ferrari, V., Tuytelaars, T., Van Gool, L.: Fast indexing for image retrieval based on local appearance with re-ranking. In: Proc. of International Conference on Image Processing (ICIP 2003), vol. 2, pp. III-737–III740 (2003)

    Google Scholar 

  29. Shao, H., Svoboda, T., Van Gool, L.: Zubud - Zurich building database for image based recognition. Technical Report TR-260, Computer Vision Lab, Swiss Federal Institute of Technology, Switzerland (2003)

    Google Scholar 

  30. Shao, H., Svoboda, T., Tuytelaars, T., Van Gool, L.: HPAT indexing for fast object/scene recognition based on local appearance. In: Bakker, E.M., Lew, M., Huang, T.S., Sebe, N., Zhou, X.S. (eds.) CIVR 2003. LNCS, vol. 2728, pp. 71–80. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  31. Xie, N., Ling, H., Hu, W., Zhang, X.: Use bin-ratio information for category and scene classification. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2010), pp. 2313–2319 (2010)

    Google Scholar 

  32. Yang, J., Jiang, Y.-G., Hauptmann, A.G., Ngo, C.-W.: Evaluating bag-of-visual-words representations in scene classification. In: Proceedings of the International Workshop on Workshop on Multimedia Information Retrieval, MIR 2007, pp. 197–206 (2007)

    Google Scholar 

  33. Zhou, L., Zhou, Z., Hu, D.: Scene classification using a multi-resolution bag-of-features model. Pattern Recognition 46(1), 424–433 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Furfaro, A., Groccia, M.C., Rombo, S.E. (2013). Image Classification Based on 2D Feature Motifs. In: Larsen, H.L., Martin-Bautista, M.J., Vila, M.A., Andreasen, T., Christiansen, H. (eds) Flexible Query Answering Systems. FQAS 2013. Lecture Notes in Computer Science(), vol 8132. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40769-7_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40769-7_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40768-0

  • Online ISBN: 978-3-642-40769-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics