Flexible Querying with Linguistic F-Cube Factory

  • R. Castillo-Ortega
  • Nicolás Marín
  • Daniel Sánchez
  • Carlos Molina
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8132)


In this paper a new tool which allows flexible querying on multidimensional data bases is presented. Linguistic F-Cube Factory is based on the use of natural language when querying multidimensional data cubes to obtain linguistic results. Natural language is one of the best ways of presenting results to human users as it is their inherent way of communication. Data warehouses take advantage of the multidimensional data model in order to store big amounts of data that users can manage and query by means of OLAP operations. They are a context where the development of a linguistic querying tool is of special interest.


Linguistic summarization Time series Multidimensional data model OLAP Business Intelligence Fuzzy Logic 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Batyrshin, I.Z., Sheremetov, L.: Perception-based approach to time series data mining. Appl. Soft Comput. 8(3), 1211–1221 (2008)CrossRefGoogle Scholar
  2. 2.
    Castillo-Ortega, R., Marín, N., Sánchez, D.: Linguistic summary-based query answering on data cubes with time dimension. In: Andreasen, T., Yager, R.R., Bulskov, H., Christiansen, H., Larsen, H.L. (eds.) FQAS 2009. LNCS, vol. 5822, pp. 560–571. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Castillo-Ortega, R., Marín, N., Sánchez, D.: Time series comparison using linguistic fuzzy techniques. In: Hüllermeier, E., Kruse, R., Hoffmann, F. (eds.) IPMU 2010. LNCS, vol. 6178, pp. 330–339. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  4. 4.
    Castillo-Ortega, R., Marín, N., Sánchez, D.: A fuzzy approach to the lingusitic summarization of time series. Journal of Multiple-Valued Logic and Soft Computing (JMVLSC) 17(2-3), 157–182 (2011)Google Scholar
  5. 5.
    Castillo-Ortega, R., Marín, N., Sánchez, D.: Linguistic query answering on data cubes with time dimension. International Journal of Intelligent Systems (IJIS) 26(10), 1002–1021 (2011)CrossRefGoogle Scholar
  6. 6.
    Castillo-Ortega, R., Marín, N., Sánchez, D., Tettamanzi, A.G.B.: A multi-objective memetic algorithm for the linguistic summarization of time series. In: GECCO, Genetic and Evolutionary Computation Conference 2011, pp. 171–172 (2011)Google Scholar
  7. 7.
    Chen, G., Wei, Q., Kerre, E.E.: Fuzzy Logic in Discovering Association Rules: An Overview. In: Data Mining and Knowledge Discovery Approaches Based on Rule Induction Techniques, Massive Computing Series. Massive Computing Series, ch. 14, pp. 459–493. Springer, Heidelberg (2006)Google Scholar
  8. 8.
    Chiang, D., Chow, L.R., Wang, Y.: Mining time series data by a fuzzy linguistic summary system. Fuzzy Sets Syst. 112, 419–432 (2000)zbMATHCrossRefGoogle Scholar
  9. 9.
    Delgado, M., Molina, C., Rodríguez Ariza, L., Sánchez, D., Vila Miranda, M.A.: F-cube factory: a fuzzy OLAP system for supporting imprecision. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 15(suppl.1), 59–81 (2007)CrossRefGoogle Scholar
  10. 10.
    Delgado, M., Molina, C., Sánchez, D., Vila, M.A., Rodriguez-Ariza, L.: A linguistic hierarchy for datacube dimensions modelling. In: Current Issues in Data and Knowledge Engineering, Varsovia, pp. 167–176 (September 2004)Google Scholar
  11. 11.
    Díaz-Hermida, F., Bugarín, A.: Linguistic summarization of data with probabilistic fuzzy quantifiers. In: ESTYLF 2010, Proceedings of XV Congreso Español Sobre Tecnologías y Lógica Fuzzy, Huelva, Spain, Frebruary 3-5, pp. 255–260 (2010)Google Scholar
  12. 12.
    Kacprzyk, J.: Fuzzy logic for linguistic summarization of databases. In: IEEE International Fuzzy Systems Conference, pp. 813–818 (1999)Google Scholar
  13. 13.
    Kacprzyk, J., Wilbik, A., Zadrozny, S.: Linguistic summarization of time series using a fuzzy quantifier driven aggregation. Fuzzy Sets and Systems 159(12), 1485–1499 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Kacprzyk, J., Wilbik, A., Zadrozny, S.: An approach to the linguistic summarization of time series using a fuzzy quantifier driven aggregation. Int. J. Intell. Syst. 25(5), 411–439 (2010)zbMATHGoogle Scholar
  15. 15.
    Kacprzyk, J., Zadrozny, S.: Data mining via protoform based linguistic summaries: Some possible relations to natural language generation. In: Proceedings of the IEEE Symposium on Computational Intelligence and Data Mining, CIDM 2009, part of the IEEE Symposium Series on Computational Intelligence 2009, Nashville, TN, USA, March 30- April 2, pp. 217–224 (2009)Google Scholar
  16. 16.
    Kobayashi, I., Okumura, N.: Verbalizing time-series data: With an example of stock price trends. In: IFSA/EUSFLAT Conf., pp. 234–239 (2009)Google Scholar
  17. 17.
    Laurent, A.: A new approach for the generation of fuzzy summaries based on fuzzy multidimensional databases. Intell. Data Anal. 7, 155–177 (2003)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Mitra, S., Pal, S.K., Mitra, P.: Data mining in soft computing framework: A survey. IEEE Transactions on Neural Networks 13, 3–14 (2001)CrossRefGoogle Scholar
  19. 19.
    Molina, C., Rodríguez Ariza, L., Sánchez, D., Vila, M.A.: A new fuzzy multidimensional model. IEEE T. Fuzzy Systems 14(6), 897–912 (2006)CrossRefGoogle Scholar
  20. 20.
    O’Brien, J.A., Marakas, G.M.: Management information systems, 8th edn. McGraw-Hill (2008)Google Scholar
  21. 21.
    Pilarski, D.: Linguistic summarization of databases with quantirius: a reduction algorithm for generated summaries. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 18(3), 305–331 (2010)CrossRefGoogle Scholar
  22. 22.
    Raschia, G., Mouaddib, N.: SAINTETIQ: a fuzzy set-based approach to database summarization. Fuzzy Sets Syst. 129(2), 137–162 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    van der Heide, A., Triviño, G.: Automatically generated linguistic summaries of energy consumption data. In: Ninth International Conference on Intelligent Systems Design and Applications, ISDA 2009, Pisa, Italy, November 30-December 2, pp. 553–559 (2009)Google Scholar
  24. 24.
    Vila, M.A., Cubero, J.C., Medina, J.M., Pons, O.: The generalized selection: an alternative way for the quotient operations in fuzzy relational databases. In: Bouchon-Meunier, B., Yager, R., Zadeh, L. (eds.) Fuzzy Logic and Soft Computing. World Scientific Press (1995)Google Scholar
  25. 25.
    Voglozin, W.A., Raschia, G., Ughetto, L., Mouaddib, N.: Querying a summary of database. J. Intell. Inf. Syst. 26(1), 59–73 (2006)CrossRefGoogle Scholar
  26. 26.
    Yager, R.R.: A new approach to the summarization of data. Information Sciences (28), 69–86 (1982)Google Scholar
  27. 27.
    Yager, R.R.: Toward a language for specifying summarizing statistics. IEEE Transactions on Systems, Man, and Cybernetics, Part B 33(2), 177–187 (2003)CrossRefGoogle Scholar
  28. 28.
    Yager, R.R.: A human directed approach for data summarization. In: IEEE International Conference on Fuzzy Systems, pp. 707–712 (2006)Google Scholar
  29. 29.
    Yager, R.R., Petry, F.E.: A multicriteria approach to data summarization using concept ontologies. IEEE T. Fuzzy Systems 14(6), 767–780 (2006)CrossRefGoogle Scholar
  30. 30.
    Zhang, L., Pei, Z., Chen, H.: Extracting fuzzy linguistic summaries based on including degree theory and FCA. In: Melin, P., Castillo, O., Aguilar, L.T., Kacprzyk, J., Pedrycz, W. (eds.) IFSA 2007. LNCS (LNAI), vol. 4529, pp. 273–283. Springer, Heidelberg (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • R. Castillo-Ortega
    • 1
  • Nicolás Marín
    • 1
  • Daniel Sánchez
    • 1
    • 2
  • Carlos Molina
    • 3
  1. 1.Department of Computer Science and A.I.University of GranadaGranadaSpain
  2. 2.European Centre for Soft ComputingMieresSpain
  3. 3.Department of Languages and Computer SystemsUniversity of JaénJaénSpain

Personalised recommendations