Landscapes Description Using Linguistic Summaries and a Two-Dimensional Cellular Automaton

  • Francisco P. Romero
  • Juan Moreno-García
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8132)


Cellular automata models are used in ecology since they permit integrate space, ecological process and stochasticity in a single predictive framework. The complex nature of modeling (spatial) ecological processes has made linguistic summaries difficult to use within the traditional cellular automata models. This paper deals with the development of a computational system capable to generate linguistic summaries from the data provided by a cellular automaton. This paper shows two proposals that can be used for this purpose. We build our system by combining techniques from Zadeh’s Computational Theory of Perceptions with ideas from the State Machine Theory. This paper discusses how linguistic descriptions may be integrated into cellular automata models and then demonstrates the use of our approach in the development of a prototype capable to provide a linguistic description of ecological phenomena.


cellular automata linguistic descriptions machine state theory computing with words 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Forman, R., Godron, M.: Landscape Ecology. Wiley, New York (1986)Google Scholar
  2. 2.
    Baker, W.: A review of models of landscape change. Landscape Ecology 2(2), 111–133 (1989)CrossRefGoogle Scholar
  3. 3.
    Sirakoulis, G., Karafyllidis, I., Thanailakis, A.: A cellular automaton model for the effects of population movement and vaccination on epidemic propagation. Ecological Modelling 133(3), 209–223 (2000)CrossRefGoogle Scholar
  4. 4.
    Ermentrout, G.B., Edelstein-Keshet, L.: Cellular automata approaches to biological modeling. J. Theor. Biol. 160(1), 97–133 (1993)CrossRefGoogle Scholar
  5. 5.
    Kacprzyk, J., Zadrozny, S.: Linguistic database summaries and their protoforms: towards natural language based knowledge discovery tools. Inf. Sci. 173(4), 281–304 (2005)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Yager, R.R.: Knowledge trees and protoforms in question-answering systems. JASIST 57(4), 550–563 (2006)CrossRefGoogle Scholar
  7. 7.
    Kacprzyk, J., Wilbik, A., Zadrozny, S.: Linguistic summarization of time series using a fuzzy quantifier driven aggregation. Fuzzy Sets and Systems 159(12), 1485–1499 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    van der Heide, A., Triviño, G.: Automatically generated linguistic summaries of energy consumption data. In: ISDA, pp. 553–559 (2009)Google Scholar
  9. 9.
    Triviño, G., Sanchez, A., Montemayor, A.S., Pantrigo, J.J., Cabido, R., Pardo, E.G.: Linguistic description of traffic in a roundabout. In: FUZZ-IEEE, pp. 1–8 (2010)Google Scholar
  10. 10.
    Langton, C.G.: Studying artificial life with cellular automata. Physica D 22D(1-3), 120–149 (1986)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Hogeweg, P.: Cellular automata as a paradigm for ecological modeling. Appl. Math. Comput. 27(1), 81–100 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Yang, X.S.: Characterization of multispecies living ecosystems with cellular automata. In: Proceedings of the Eighth International Conference on Artificial Life, ICAL 2003, pp. 138–141. MIT Press, Cambridge (2003)Google Scholar
  13. 13.
    Cannas, S.A., Páez, S.A., Marco, D.E.: Modeling plant spread in forest ecology using cellular automata. Computer Physics Communications 121/122, 131–135 (1999)Google Scholar
  14. 14.
    Soares-Filho, B.S., Cerqueira, G.C., Pennachin, C.L.: Dinamica – a stochastic cellular automata model designed to simulate the landscape dynamics in an amazonian colonization frontier. Ecological Modelling 154(3), 217–235 (2002)CrossRefGoogle Scholar
  15. 15.
    Mantelas, L.A., Hatzichristos, T., Prastacos, P.: A fuzzy cellular automata modeling approach – accessing urban growth dynamics in linguistic terms. In: Taniar, D., Gervasi, O., Murgante, B., Pardede, E., Apduhan, B.O. (eds.) ICCSA 2010, Part I. LNCS, vol. 6016, pp. 140–151. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  16. 16.
    Yager, R.R.: A new approach to the summarization of data. Inf. Sci. 28(1), 69–86 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Chen, Y.L., Lin, F.: Modeling of discrete event systems using finite state machines with parameters. In: Proceedings of the 2000 IEEE International Conference on Control Applications, pp. 941–946 (2000)Google Scholar
  18. 18.
    Cheng, K.T., Krishnakumar, A.S.: Automatic generation of functional vectors using the extended finite state machine model. ACM Trans. Des. Autom. Electron. Syst. 1(1), 57–79 (1996)CrossRefGoogle Scholar
  19. 19.
    Yager, R.R.: Fuzzy summaries in database mining. In: Proceedings of the 11th Conference on Artificial Intelligence for Applications, CAIA 1995, p. 265. IEEE Computer Society, Washington, DC (1995)CrossRefGoogle Scholar
  20. 20.
    Zadeh, L.A.: A computational approach to fuzzy quantifiers in natural languages. Computers & Mathematics with Applications 9(1) (1983)Google Scholar
  21. 21.
    Perttu, K.: Ecological, biological balances and conservation. Biomass and Bioenergy 9(1-5), 107–116 (1995)CrossRefGoogle Scholar
  22. 22.
    Silvertown, J.: Introduction to plant population ecology. Longman (1982)Google Scholar
  23. 23.
    Reznick, D., Bryant, M.J., Bashey, F.: r-and-K-Selection Revisited: The Role of Population Regulation in Life-History Evolution. Ecology 83(6), 1509–1520 (2002)Google Scholar
  24. 24.
    Hill, M.O.: Diversity and evenness: a unifying notation and its consequences. Ecology 54(2), 427–432 (1973)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Francisco P. Romero
    • 1
  • Juan Moreno-García
    • 1
  1. 1.School of Industrial EngineeringUniversity of Castilla La ManchaToledoSpain

Personalised recommendations