Advertisement

Linguistic Descriptions: Their Structure and Applications

  • Vilém Novák
  • Martin Štěpnička
  • Jiří Kupka
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8132)

Abstract

In this paper, we provide a brief survey of the main theoretical and conceptual principles of methods that use the, so called, linguistic descriptions and thus, belong to the broad area of methods encapsulated under the term modeling with words. The theoretical frame is fuzzy natural logic — an extension of mathematical fuzzy logic consisting of several constituents. In this paper, we will deal with formal logical theory of evaluative linguistic expressions and the related concepts of linguistic description and perception-based logical deduction. Furthermore, we mention some applications and highlight two of them: forecasting and linguistic analysis of time series and linguistic associations mining.

Keywords

Fuzzy Logic Fuzzy Logic Controller Fuzzy Relation Linguistic Expression Approximate Reasoning 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Martínez, L., Ruan, D., Herrera, F.: Computing with words in decision support systems: An overview on models and applications. Int. J. of Comp. Intelligence Systems 3, 382–395 (2010)Google Scholar
  2. 2.
    Zadeh, L., Kacprzyk, J.E. (eds.): Computing with Words in Information/Intelligent Systems 1. STUDFUZZ, vol. 33. Springer, Heidelberg (1999)zbMATHGoogle Scholar
  3. 3.
    Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning I, II, III. Information Sciences 8(9), 199–257, 301–357, 43–80 (1975)Google Scholar
  4. 4.
    Hájek, P.: Metamathematics of Fuzzy Logic. Kluwer, Dordrecht (1998)zbMATHCrossRefGoogle Scholar
  5. 5.
    Novák, V., Perfilieva, I., Močkoř, J.: Mathematical Principles of Fuzzy Logic. Kluwer, Boston (1999)zbMATHCrossRefGoogle Scholar
  6. 6.
    Hajičová, E., Partee, B.H., Sgall, P.: Topic-Focus Articulation, Tripartite Structures, and Semantics Content. Kluwer, Dordrecht (1998)CrossRefGoogle Scholar
  7. 7.
    Duží, M., Jespersen, B., Materna, P.: Procedural Semantics for Hyperintensional Logic. Springer, Dordrecht (2010)zbMATHGoogle Scholar
  8. 8.
    Novák, V.: A comprehensive theory of trichotomous evaluative linguistic expressions. Fuzzy Sets and Systems 159(22), 2939–2969 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Calvo, T., Mayor, G., Mesiar, R. (eds.): Aggregation operators. New trends and applications. Physica-Verlag, Heidelberg (2002)zbMATHGoogle Scholar
  10. 10.
    Novák, V., Perfilieva, I.: On the semantics of perception-based fuzzy logic deduction. International Journal of Intelligent Systems 19, 1007–1031 (2004)zbMATHCrossRefGoogle Scholar
  11. 11.
    Novák, V.: Perception-based logical deduction. In: Reusch, B. (ed.) Computational Intelligence, Theory and Applications, pp. 237–250. Springer, Berlin (2005)CrossRefGoogle Scholar
  12. 12.
    Novák, V.: Linguistically oriented fuzzy logic controller and its design. Int. J. of Approximate Reasoning 12, 263–277 (1995)zbMATHCrossRefGoogle Scholar
  13. 13.
    Novák, V., Perfilieva, I., Jarushkina, N.G.: A general methodology for managerial decision making using intelligent techniques. In: Rakus-Andersson, E., Yager, R.R., Ichalkaranje, N., Jain, L.C. (eds.) Recent Advances in Decision Making. SCI, vol. 222, pp. 103–120. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  14. 14.
    Perfilieva, I.: Fuzzy transforms: theory and applications. Fuzzy Sets and Systems 157, 993–1023 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Novák, V., Štěpnička, M., Dvořák, A., Perfilieva, I., Pavliska, V., Vavříčková, L.: Analysis of seasonal time series using fuzzy approach. International Journal of General Systems 39, 305–328 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Štěpnička, M., Dvořák, A., Pavliska, V., Vavříčková, L.: A linguistic approach to time series modeling with the help of the F-transform. Fuzzy Sets and Systems 180, 164–184 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Bodenhofer, U., Bauer, P.: Interpretability of linguistic variables: a formal account. Kybernetika 2, 227–248 (2005)MathSciNetGoogle Scholar
  18. 18.
    Štěpnička, M., Donate, J., Cortez, P., Vavříčková, L., Gutierrez, G.: Forecasting seasonal time series with computational intelligence: contribution of a combination of distinct methods. In: Proc. EUSFLAT 2011, pp. 464–471 (2011)Google Scholar
  19. 19.
    Novák, V., Perfilieva, I., Dvořák, A., Chen, Q., Wei, Q., Yan, P.: Mining pure linguistic associations from numerical data. International Journal of Approximate Reasoning 48, 4–22 (2008)zbMATHCrossRefGoogle Scholar
  20. 20.
    Hájek, P., Havránek, T.: Mechanizing Hypothesis formation, Mathematical Foundations for a General Theory. Springer, New York (1978)zbMATHCrossRefGoogle Scholar
  21. 21.
    Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large databases. In: 20th International Conference on Very Large Databases, Santiago, Chile (1994)Google Scholar
  22. 22.
    Kupka, J., Tomanová, I.: Some extensions of mining of linguistic associations. Neural Network World 20, 27–44 (2010)Google Scholar
  23. 23.
    Hüllermeier, E., Yi, Y.: In defense of fuzzy association analysis. IEEE Transactions on Systems, Man, and Cybernetics B 37(4) (2007)Google Scholar
  24. 24.
    Kupka, J., Tomanová, I.: Some dependencies among attributes given by fuzzy confirmation measures. In: Proc. EUSFLAT - LFA 2011, pp. 498–505 (2011)Google Scholar
  25. 25.
    Perfilieva, I., Novák, V., Dvořák, A.: Fuzzy transform in the analysis of data. International Journal of Approximate Reasoning 48(1) (2008)Google Scholar
  26. 26.
    Novák, V.: Linguistically oriented fuzzy logic controller. In: Proc. of the 2nd Int. Conf. On Fuzzy Logic and Neural Networks IIZUKA 1992, pp. 579–582. Fuzzy Logic Systems Institute, Iizuka (1992)Google Scholar
  27. 27.
    Novák, V.: Genuine linguistic fuzzy logic control: Powerful and successful control method. In: Hüllermeier, E., Kruse, R., Hoffmann, F. (eds.) IPMU 2010. LNCS (LNAI), vol. 6178, pp. 634–644. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  28. 28.
    Bělohlávek, R., Novák, V.: Learning rule base of the linguistic expert systems. Soft Computing 7, 79–88 (2002)zbMATHCrossRefGoogle Scholar
  29. 29.
    Novák, V., Kovář, J.: Linguistic IF-THEN rules in large scale application of fuzzy control. In: Da, R., Kerre, E. (eds.) Fuzzy If-Then Rules in Computational Intelligence: Theory and Applications, pp. 223–241. Kluwer Academic Publishers, Boston (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Vilém Novák
    • 1
  • Martin Štěpnička
    • 1
  • Jiří Kupka
    • 1
  1. 1.Centre of Excellence IT4Innovations, Institute for Research and Applications of Fuzzy ModelingDivision of the University of OstravaOstrava 1Czech Republic

Personalised recommendations